Metamath Proof Explorer


Theorem yon12

Description: Value of the Yoneda embedding at a morphism. The partially evaluated Yoneda embedding is also the contravariant Hom functor. (Contributed by Mario Carneiro, 17-Jan-2017)

Ref Expression
Hypotheses yon11.y Y = Yon C
yon11.b B = Base C
yon11.c φ C Cat
yon11.p φ X B
yon11.h H = Hom C
yon11.z φ Z B
yon12.x · ˙ = comp C
yon12.w φ W B
yon12.f φ F W H Z
yon12.g φ G Z H X
Assertion yon12 φ Z 2 nd 1 st Y X W F G = G W Z · ˙ X F

Proof

Step Hyp Ref Expression
1 yon11.y Y = Yon C
2 yon11.b B = Base C
3 yon11.c φ C Cat
4 yon11.p φ X B
5 yon11.h H = Hom C
6 yon11.z φ Z B
7 yon12.x · ˙ = comp C
8 yon12.w φ W B
9 yon12.f φ F W H Z
10 yon12.g φ G Z H X
11 eqid oppCat C = oppCat C
12 eqid Hom F oppCat C = Hom F oppCat C
13 1 3 11 12 yonval φ Y = C oppCat C curry F Hom F oppCat C
14 13 fveq2d φ 1 st Y = 1 st C oppCat C curry F Hom F oppCat C
15 14 fveq1d φ 1 st Y X = 1 st C oppCat C curry F Hom F oppCat C X
16 15 fveq2d φ 2 nd 1 st Y X = 2 nd 1 st C oppCat C curry F Hom F oppCat C X
17 16 oveqd φ Z 2 nd 1 st Y X W = Z 2 nd 1 st C oppCat C curry F Hom F oppCat C X W
18 17 fveq1d φ Z 2 nd 1 st Y X W F = Z 2 nd 1 st C oppCat C curry F Hom F oppCat C X W F
19 eqid C oppCat C curry F Hom F oppCat C = C oppCat C curry F Hom F oppCat C
20 11 oppccat C Cat oppCat C Cat
21 3 20 syl φ oppCat C Cat
22 eqid SetCat ran Hom 𝑓 C = SetCat ran Hom 𝑓 C
23 fvex Hom 𝑓 C V
24 23 rnex ran Hom 𝑓 C V
25 24 a1i φ ran Hom 𝑓 C V
26 ssidd φ ran Hom 𝑓 C ran Hom 𝑓 C
27 11 12 22 3 25 26 oppchofcl φ Hom F oppCat C C × c oppCat C Func SetCat ran Hom 𝑓 C
28 11 2 oppcbas B = Base oppCat C
29 eqid 1 st C oppCat C curry F Hom F oppCat C X = 1 st C oppCat C curry F Hom F oppCat C X
30 eqid Hom oppCat C = Hom oppCat C
31 eqid Id C = Id C
32 5 11 oppchom Z Hom oppCat C W = W H Z
33 9 32 eleqtrrdi φ F Z Hom oppCat C W
34 19 2 3 21 27 28 4 29 6 30 31 8 33 curf12 φ Z 2 nd 1 st C oppCat C curry F Hom F oppCat C X W F = Id C X X Z 2 nd Hom F oppCat C X W F
35 18 34 eqtrd φ Z 2 nd 1 st Y X W F = Id C X X Z 2 nd Hom F oppCat C X W F
36 35 fveq1d φ Z 2 nd 1 st Y X W F G = Id C X X Z 2 nd Hom F oppCat C X W F G
37 eqid comp oppCat C = comp oppCat C
38 2 5 31 3 4 catidcl φ Id C X X H X
39 5 11 oppchom X Hom oppCat C X = X H X
40 38 39 eleqtrrdi φ Id C X X Hom oppCat C X
41 5 11 oppchom X Hom oppCat C Z = Z H X
42 10 41 eleqtrrdi φ G X Hom oppCat C Z
43 12 21 28 30 4 6 4 8 37 40 33 42 hof2 φ Id C X X Z 2 nd Hom F oppCat C X W F G = F X Z comp oppCat C W G X X comp oppCat C W Id C X
44 2 7 11 4 6 8 oppcco φ F X Z comp oppCat C W G = G W Z · ˙ X F
45 44 oveq1d φ F X Z comp oppCat C W G X X comp oppCat C W Id C X = G W Z · ˙ X F X X comp oppCat C W Id C X
46 2 7 11 4 4 8 oppcco φ G W Z · ˙ X F X X comp oppCat C W Id C X = Id C X W X · ˙ X G W Z · ˙ X F
47 2 5 7 3 8 6 4 9 10 catcocl φ G W Z · ˙ X F W H X
48 2 5 31 3 8 7 4 47 catlid φ Id C X W X · ˙ X G W Z · ˙ X F = G W Z · ˙ X F
49 45 46 48 3eqtrd φ F X Z comp oppCat C W G X X comp oppCat C W Id C X = G W Z · ˙ X F
50 36 43 49 3eqtrd φ Z 2 nd 1 st Y X W F G = G W Z · ˙ X F