Metamath Proof Explorer


Theorem zrninitoringc

Description: The zero ring is not an initial object in the category of unital rings (if the universe contains at least one unital ring different from the zero ring). (Contributed by AV, 18-Apr-2020)

Ref Expression
Hypotheses zrtermoringc.u φUV
zrtermoringc.c C=RingCatU
zrtermoringc.z φZRingNzRing
zrtermoringc.e φZU
zrninitoringc.e φrBaseCrNzRing
Assertion zrninitoringc φZInitOC

Proof

Step Hyp Ref Expression
1 zrtermoringc.u φUV
2 zrtermoringc.c C=RingCatU
3 zrtermoringc.z φZRingNzRing
4 zrtermoringc.e φZU
5 zrninitoringc.e φrBaseCrNzRing
6 eqid BaseC=BaseC
7 1 ad2antrr φrBaseCrNzRingUV
8 eqid HomC=HomC
9 3 eldifad φZRing
10 4 9 elind φZURing
11 2 6 1 ringcbas φBaseC=URing
12 10 11 eleqtrrd φZBaseC
13 12 ad2antrr φrBaseCrNzRingZBaseC
14 simplr φrBaseCrNzRingrBaseC
15 2 6 7 8 13 14 ringchom φrBaseCrNzRingZHomCr=ZRingHomr
16 3 adantr φrBaseCZRingNzRing
17 nrhmzr ZRingNzRingrNzRingZRingHomr=
18 16 17 sylan φrBaseCrNzRingZRingHomr=
19 15 18 eqtrd φrBaseCrNzRingZHomCr=
20 eq0 ZHomCr=h¬hZHomCr
21 19 20 sylib φrBaseCrNzRingh¬hZHomCr
22 alnex h¬hZHomCr¬hhZHomCr
23 21 22 sylib φrBaseCrNzRing¬hhZHomCr
24 euex ∃!hhZHomCrhhZHomCr
25 23 24 nsyl φrBaseCrNzRing¬∃!hhZHomCr
26 25 ex φrBaseCrNzRing¬∃!hhZHomCr
27 26 reximdva φrBaseCrNzRingrBaseC¬∃!hhZHomCr
28 5 27 mpd φrBaseC¬∃!hhZHomCr
29 rexnal rBaseC¬∃!hhZHomCr¬rBaseC∃!hhZHomCr
30 28 29 sylib φ¬rBaseC∃!hhZHomCr
31 df-nel ZInitOC¬ZInitOC
32 2 ringccat UVCCat
33 1 32 syl φCCat
34 6 8 33 12 isinito φZInitOCrBaseC∃!hhZHomCr
35 34 notbid φ¬ZInitOC¬rBaseC∃!hhZHomCr
36 31 35 bitrid φZInitOC¬rBaseC∃!hhZHomCr
37 30 36 mpbird φZInitOC