Description: The zero ring is not an initial object in the category of unital rings (if the universe contains at least one unital ring different from the zero ring). (Contributed by AV, 18-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | zrtermoringc.u | |
|
zrtermoringc.c | |
||
zrtermoringc.z | |
||
zrtermoringc.e | |
||
zrninitoringc.e | |
||
Assertion | zrninitoringc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zrtermoringc.u | |
|
2 | zrtermoringc.c | |
|
3 | zrtermoringc.z | |
|
4 | zrtermoringc.e | |
|
5 | zrninitoringc.e | |
|
6 | eqid | |
|
7 | 1 | ad2antrr | |
8 | eqid | |
|
9 | 3 | eldifad | |
10 | 4 9 | elind | |
11 | 2 6 1 | ringcbas | |
12 | 10 11 | eleqtrrd | |
13 | 12 | ad2antrr | |
14 | simplr | |
|
15 | 2 6 7 8 13 14 | ringchom | |
16 | 3 | adantr | |
17 | nrhmzr | |
|
18 | 16 17 | sylan | |
19 | 15 18 | eqtrd | |
20 | eq0 | |
|
21 | 19 20 | sylib | |
22 | alnex | |
|
23 | 21 22 | sylib | |
24 | euex | |
|
25 | 23 24 | nsyl | |
26 | 25 | ex | |
27 | 26 | reximdva | |
28 | 5 27 | mpd | |
29 | rexnal | |
|
30 | 28 29 | sylib | |
31 | df-nel | |
|
32 | 2 | ringccat | |
33 | 1 32 | syl | |
34 | 6 8 33 12 | isinito | |
35 | 34 | notbid | |
36 | 31 35 | bitrid | |
37 | 30 36 | mpbird | |