Metamath Proof Explorer


Theorem zrninitoringc

Description: The zero ring is not an initial object in the category of unital rings (if the universe contains at least one unital ring different from the zero ring). (Contributed by AV, 18-Apr-2020)

Ref Expression
Hypotheses zrtermoringc.u φ U V
zrtermoringc.c C = RingCat U
zrtermoringc.z φ Z Ring NzRing
zrtermoringc.e φ Z U
zrninitoringc.e φ r Base C r NzRing
Assertion zrninitoringc φ Z InitO C

Proof

Step Hyp Ref Expression
1 zrtermoringc.u φ U V
2 zrtermoringc.c C = RingCat U
3 zrtermoringc.z φ Z Ring NzRing
4 zrtermoringc.e φ Z U
5 zrninitoringc.e φ r Base C r NzRing
6 eqid Base C = Base C
7 1 ad2antrr φ r Base C r NzRing U V
8 eqid Hom C = Hom C
9 3 eldifad φ Z Ring
10 4 9 elind φ Z U Ring
11 2 6 1 ringcbas φ Base C = U Ring
12 10 11 eleqtrrd φ Z Base C
13 12 ad2antrr φ r Base C r NzRing Z Base C
14 simplr φ r Base C r NzRing r Base C
15 2 6 7 8 13 14 ringchom φ r Base C r NzRing Z Hom C r = Z RingHom r
16 3 adantr φ r Base C Z Ring NzRing
17 nrhmzr Z Ring NzRing r NzRing Z RingHom r =
18 16 17 sylan φ r Base C r NzRing Z RingHom r =
19 15 18 eqtrd φ r Base C r NzRing Z Hom C r =
20 eq0 Z Hom C r = h ¬ h Z Hom C r
21 19 20 sylib φ r Base C r NzRing h ¬ h Z Hom C r
22 alnex h ¬ h Z Hom C r ¬ h h Z Hom C r
23 21 22 sylib φ r Base C r NzRing ¬ h h Z Hom C r
24 euex ∃! h h Z Hom C r h h Z Hom C r
25 23 24 nsyl φ r Base C r NzRing ¬ ∃! h h Z Hom C r
26 25 ex φ r Base C r NzRing ¬ ∃! h h Z Hom C r
27 26 reximdva φ r Base C r NzRing r Base C ¬ ∃! h h Z Hom C r
28 5 27 mpd φ r Base C ¬ ∃! h h Z Hom C r
29 rexnal r Base C ¬ ∃! h h Z Hom C r ¬ r Base C ∃! h h Z Hom C r
30 28 29 sylib φ ¬ r Base C ∃! h h Z Hom C r
31 df-nel Z InitO C ¬ Z InitO C
32 2 ringccat U V C Cat
33 1 32 syl φ C Cat
34 6 8 33 12 isinito φ Z InitO C r Base C ∃! h h Z Hom C r
35 34 notbid φ ¬ Z InitO C ¬ r Base C ∃! h h Z Hom C r
36 31 35 syl5bb φ Z InitO C ¬ r Base C ∃! h h Z Hom C r
37 30 36 mpbird φ Z InitO C