| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ablfac1.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
ablfac1.o |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
| 3 |
|
ablfac1.s |
⊢ 𝑆 = ( 𝑝 ∈ 𝐴 ↦ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } ) |
| 4 |
|
ablfac1.g |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
| 5 |
|
ablfac1.f |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
| 6 |
|
ablfac1.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℙ ) |
| 7 |
|
ablfac1c.d |
⊢ 𝐷 = { 𝑤 ∈ ℙ ∣ 𝑤 ∥ ( ♯ ‘ 𝐵 ) } |
| 8 |
|
ablfac1.2 |
⊢ ( 𝜑 → 𝐷 ⊆ 𝐴 ) |
| 9 |
1
|
dprdssv |
⊢ ( 𝐺 DProd 𝑆 ) ⊆ 𝐵 |
| 10 |
9
|
a1i |
⊢ ( 𝜑 → ( 𝐺 DProd 𝑆 ) ⊆ 𝐵 ) |
| 11 |
|
ssfi |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝐺 DProd 𝑆 ) ⊆ 𝐵 ) → ( 𝐺 DProd 𝑆 ) ∈ Fin ) |
| 12 |
5 9 11
|
sylancl |
⊢ ( 𝜑 → ( 𝐺 DProd 𝑆 ) ∈ Fin ) |
| 13 |
|
hashcl |
⊢ ( ( 𝐺 DProd 𝑆 ) ∈ Fin → ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ∈ ℕ0 ) |
| 14 |
12 13
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ∈ ℕ0 ) |
| 15 |
|
hashcl |
⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 16 |
5 15
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 17 |
1 2 3 4 5 6
|
ablfac1b |
⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) |
| 18 |
|
dprdsubg |
⊢ ( 𝐺 dom DProd 𝑆 → ( 𝐺 DProd 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 19 |
17 18
|
syl |
⊢ ( 𝜑 → ( 𝐺 DProd 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 20 |
1
|
lagsubg |
⊢ ( ( ( 𝐺 DProd 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ∥ ( ♯ ‘ 𝐵 ) ) |
| 21 |
19 5 20
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ∥ ( ♯ ‘ 𝐵 ) ) |
| 22 |
|
breq1 |
⊢ ( 𝑤 = 𝑞 → ( 𝑤 ∥ ( ♯ ‘ 𝐵 ) ↔ 𝑞 ∥ ( ♯ ‘ 𝐵 ) ) ) |
| 23 |
22 7
|
elrab2 |
⊢ ( 𝑞 ∈ 𝐷 ↔ ( 𝑞 ∈ ℙ ∧ 𝑞 ∥ ( ♯ ‘ 𝐵 ) ) ) |
| 24 |
8
|
sseld |
⊢ ( 𝜑 → ( 𝑞 ∈ 𝐷 → 𝑞 ∈ 𝐴 ) ) |
| 25 |
23 24
|
biimtrrid |
⊢ ( 𝜑 → ( ( 𝑞 ∈ ℙ ∧ 𝑞 ∥ ( ♯ ‘ 𝐵 ) ) → 𝑞 ∈ 𝐴 ) ) |
| 26 |
25
|
impl |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ ( ♯ ‘ 𝐵 ) ) → 𝑞 ∈ 𝐴 ) |
| 27 |
1 2 3 4 5 6
|
ablfac1a |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( ♯ ‘ ( 𝑆 ‘ 𝑞 ) ) = ( 𝑞 ↑ ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) ) ) |
| 28 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
| 29 |
28
|
rabex |
⊢ { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑝 ↑ ( 𝑝 pCnt ( ♯ ‘ 𝐵 ) ) ) } ∈ V |
| 30 |
29 3
|
dmmpti |
⊢ dom 𝑆 = 𝐴 |
| 31 |
30
|
a1i |
⊢ ( 𝜑 → dom 𝑆 = 𝐴 ) |
| 32 |
17 31
|
dprdf2 |
⊢ ( 𝜑 → 𝑆 : 𝐴 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 33 |
32
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( 𝑆 ‘ 𝑞 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 34 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → 𝐺 dom DProd 𝑆 ) |
| 35 |
30
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → dom 𝑆 = 𝐴 ) |
| 36 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → 𝑞 ∈ 𝐴 ) |
| 37 |
34 35 36
|
dprdub |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( 𝑆 ‘ 𝑞 ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
| 38 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( 𝐺 DProd 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 39 |
|
eqid |
⊢ ( 𝐺 ↾s ( 𝐺 DProd 𝑆 ) ) = ( 𝐺 ↾s ( 𝐺 DProd 𝑆 ) ) |
| 40 |
39
|
subsubg |
⊢ ( ( 𝐺 DProd 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) → ( ( 𝑆 ‘ 𝑞 ) ∈ ( SubGrp ‘ ( 𝐺 ↾s ( 𝐺 DProd 𝑆 ) ) ) ↔ ( ( 𝑆 ‘ 𝑞 ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑆 ‘ 𝑞 ) ⊆ ( 𝐺 DProd 𝑆 ) ) ) ) |
| 41 |
38 40
|
syl |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( ( 𝑆 ‘ 𝑞 ) ∈ ( SubGrp ‘ ( 𝐺 ↾s ( 𝐺 DProd 𝑆 ) ) ) ↔ ( ( 𝑆 ‘ 𝑞 ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑆 ‘ 𝑞 ) ⊆ ( 𝐺 DProd 𝑆 ) ) ) ) |
| 42 |
33 37 41
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( 𝑆 ‘ 𝑞 ) ∈ ( SubGrp ‘ ( 𝐺 ↾s ( 𝐺 DProd 𝑆 ) ) ) ) |
| 43 |
39
|
subgbas |
⊢ ( ( 𝐺 DProd 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 DProd 𝑆 ) = ( Base ‘ ( 𝐺 ↾s ( 𝐺 DProd 𝑆 ) ) ) ) |
| 44 |
38 43
|
syl |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( 𝐺 DProd 𝑆 ) = ( Base ‘ ( 𝐺 ↾s ( 𝐺 DProd 𝑆 ) ) ) ) |
| 45 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( 𝐺 DProd 𝑆 ) ∈ Fin ) |
| 46 |
44 45
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( Base ‘ ( 𝐺 ↾s ( 𝐺 DProd 𝑆 ) ) ) ∈ Fin ) |
| 47 |
|
eqid |
⊢ ( Base ‘ ( 𝐺 ↾s ( 𝐺 DProd 𝑆 ) ) ) = ( Base ‘ ( 𝐺 ↾s ( 𝐺 DProd 𝑆 ) ) ) |
| 48 |
47
|
lagsubg |
⊢ ( ( ( 𝑆 ‘ 𝑞 ) ∈ ( SubGrp ‘ ( 𝐺 ↾s ( 𝐺 DProd 𝑆 ) ) ) ∧ ( Base ‘ ( 𝐺 ↾s ( 𝐺 DProd 𝑆 ) ) ) ∈ Fin ) → ( ♯ ‘ ( 𝑆 ‘ 𝑞 ) ) ∥ ( ♯ ‘ ( Base ‘ ( 𝐺 ↾s ( 𝐺 DProd 𝑆 ) ) ) ) ) |
| 49 |
42 46 48
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( ♯ ‘ ( 𝑆 ‘ 𝑞 ) ) ∥ ( ♯ ‘ ( Base ‘ ( 𝐺 ↾s ( 𝐺 DProd 𝑆 ) ) ) ) ) |
| 50 |
44
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) = ( ♯ ‘ ( Base ‘ ( 𝐺 ↾s ( 𝐺 DProd 𝑆 ) ) ) ) ) |
| 51 |
49 50
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( ♯ ‘ ( 𝑆 ‘ 𝑞 ) ) ∥ ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ) |
| 52 |
27 51
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( 𝑞 ↑ ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) ) ∥ ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ) |
| 53 |
6
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → 𝑞 ∈ ℙ ) |
| 54 |
14
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ∈ ℤ ) |
| 55 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ∈ ℤ ) |
| 56 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) → 𝑞 ∈ ℙ ) |
| 57 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
| 58 |
1
|
grpbn0 |
⊢ ( 𝐺 ∈ Grp → 𝐵 ≠ ∅ ) |
| 59 |
4 57 58
|
3syl |
⊢ ( 𝜑 → 𝐵 ≠ ∅ ) |
| 60 |
|
hashnncl |
⊢ ( 𝐵 ∈ Fin → ( ( ♯ ‘ 𝐵 ) ∈ ℕ ↔ 𝐵 ≠ ∅ ) ) |
| 61 |
5 60
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐵 ) ∈ ℕ ↔ 𝐵 ≠ ∅ ) ) |
| 62 |
59 61
|
mpbird |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ ) |
| 63 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) → ( ♯ ‘ 𝐵 ) ∈ ℕ ) |
| 64 |
56 63
|
pccld |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) → ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) ∈ ℕ0 ) |
| 65 |
53 64
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) ∈ ℕ0 ) |
| 66 |
|
pcdvdsb |
⊢ ( ( 𝑞 ∈ ℙ ∧ ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ∈ ℤ ∧ ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) ∈ ℕ0 ) → ( ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) ≤ ( 𝑞 pCnt ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ) ↔ ( 𝑞 ↑ ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) ) ∥ ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ) ) |
| 67 |
53 55 65 66
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) ≤ ( 𝑞 pCnt ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ) ↔ ( 𝑞 ↑ ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) ) ∥ ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ) ) |
| 68 |
52 67
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ) → ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) ≤ ( 𝑞 pCnt ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ) ) |
| 69 |
68
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∈ 𝐴 ) → ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) ≤ ( 𝑞 pCnt ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ) ) |
| 70 |
26 69
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ ( ♯ ‘ 𝐵 ) ) → ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) ≤ ( 𝑞 pCnt ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ) ) |
| 71 |
|
pceq0 |
⊢ ( ( 𝑞 ∈ ℙ ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ ) → ( ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) = 0 ↔ ¬ 𝑞 ∥ ( ♯ ‘ 𝐵 ) ) ) |
| 72 |
56 63 71
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) → ( ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) = 0 ↔ ¬ 𝑞 ∥ ( ♯ ‘ 𝐵 ) ) ) |
| 73 |
72
|
biimpar |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 ∥ ( ♯ ‘ 𝐵 ) ) → ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) = 0 ) |
| 74 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 75 |
74
|
subg0cl |
⊢ ( ( 𝐺 DProd 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ ( 𝐺 DProd 𝑆 ) ) |
| 76 |
|
ne0i |
⊢ ( ( 0g ‘ 𝐺 ) ∈ ( 𝐺 DProd 𝑆 ) → ( 𝐺 DProd 𝑆 ) ≠ ∅ ) |
| 77 |
19 75 76
|
3syl |
⊢ ( 𝜑 → ( 𝐺 DProd 𝑆 ) ≠ ∅ ) |
| 78 |
|
hashnncl |
⊢ ( ( 𝐺 DProd 𝑆 ) ∈ Fin → ( ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ∈ ℕ ↔ ( 𝐺 DProd 𝑆 ) ≠ ∅ ) ) |
| 79 |
12 78
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ∈ ℕ ↔ ( 𝐺 DProd 𝑆 ) ≠ ∅ ) ) |
| 80 |
77 79
|
mpbird |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ∈ ℕ ) |
| 81 |
80
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) → ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ∈ ℕ ) |
| 82 |
56 81
|
pccld |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) → ( 𝑞 pCnt ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ) ∈ ℕ0 ) |
| 83 |
82
|
nn0ge0d |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) → 0 ≤ ( 𝑞 pCnt ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ) ) |
| 84 |
83
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 ∥ ( ♯ ‘ 𝐵 ) ) → 0 ≤ ( 𝑞 pCnt ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ) ) |
| 85 |
73 84
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ ¬ 𝑞 ∥ ( ♯ ‘ 𝐵 ) ) → ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) ≤ ( 𝑞 pCnt ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ) ) |
| 86 |
70 85
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) → ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) ≤ ( 𝑞 pCnt ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ) ) |
| 87 |
86
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑞 ∈ ℙ ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) ≤ ( 𝑞 pCnt ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ) ) |
| 88 |
16
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℤ ) |
| 89 |
|
pc2dvds |
⊢ ( ( ( ♯ ‘ 𝐵 ) ∈ ℤ ∧ ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ∈ ℤ ) → ( ( ♯ ‘ 𝐵 ) ∥ ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ↔ ∀ 𝑞 ∈ ℙ ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) ≤ ( 𝑞 pCnt ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ) ) ) |
| 90 |
88 54 89
|
syl2anc |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐵 ) ∥ ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ↔ ∀ 𝑞 ∈ ℙ ( 𝑞 pCnt ( ♯ ‘ 𝐵 ) ) ≤ ( 𝑞 pCnt ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ) ) ) |
| 91 |
87 90
|
mpbird |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∥ ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ) |
| 92 |
|
dvdseq |
⊢ ( ( ( ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) ∧ ( ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ∥ ( ♯ ‘ 𝐵 ) ∧ ( ♯ ‘ 𝐵 ) ∥ ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) ) ) → ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) = ( ♯ ‘ 𝐵 ) ) |
| 93 |
14 16 21 91 92
|
syl22anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) = ( ♯ ‘ 𝐵 ) ) |
| 94 |
|
hashen |
⊢ ( ( ( 𝐺 DProd 𝑆 ) ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) = ( ♯ ‘ 𝐵 ) ↔ ( 𝐺 DProd 𝑆 ) ≈ 𝐵 ) ) |
| 95 |
12 5 94
|
syl2anc |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝐺 DProd 𝑆 ) ) = ( ♯ ‘ 𝐵 ) ↔ ( 𝐺 DProd 𝑆 ) ≈ 𝐵 ) ) |
| 96 |
93 95
|
mpbid |
⊢ ( 𝜑 → ( 𝐺 DProd 𝑆 ) ≈ 𝐵 ) |
| 97 |
|
fisseneq |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝐺 DProd 𝑆 ) ⊆ 𝐵 ∧ ( 𝐺 DProd 𝑆 ) ≈ 𝐵 ) → ( 𝐺 DProd 𝑆 ) = 𝐵 ) |
| 98 |
5 10 96 97
|
syl3anc |
⊢ ( 𝜑 → ( 𝐺 DProd 𝑆 ) = 𝐵 ) |