| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
⊢ ( 𝑌 ∈ 𝑉 → 𝑌 ∈ V ) |
| 2 |
|
0wdom |
⊢ ( 𝑌 ∈ V → ∅ ≼* 𝑌 ) |
| 3 |
|
breq1 |
⊢ ( 𝑋 = ∅ → ( 𝑋 ≼* 𝑌 ↔ ∅ ≼* 𝑌 ) ) |
| 4 |
2 3
|
syl5ibrcom |
⊢ ( 𝑌 ∈ V → ( 𝑋 = ∅ → 𝑋 ≼* 𝑌 ) ) |
| 5 |
4
|
imp |
⊢ ( ( 𝑌 ∈ V ∧ 𝑋 = ∅ ) → 𝑋 ≼* 𝑌 ) |
| 6 |
|
0elpw |
⊢ ∅ ∈ 𝒫 𝑌 |
| 7 |
|
f1o0 |
⊢ ∅ : ∅ –1-1-onto→ ∅ |
| 8 |
|
f1ofo |
⊢ ( ∅ : ∅ –1-1-onto→ ∅ → ∅ : ∅ –onto→ ∅ ) |
| 9 |
|
0ex |
⊢ ∅ ∈ V |
| 10 |
|
foeq1 |
⊢ ( 𝑧 = ∅ → ( 𝑧 : ∅ –onto→ ∅ ↔ ∅ : ∅ –onto→ ∅ ) ) |
| 11 |
9 10
|
spcev |
⊢ ( ∅ : ∅ –onto→ ∅ → ∃ 𝑧 𝑧 : ∅ –onto→ ∅ ) |
| 12 |
7 8 11
|
mp2b |
⊢ ∃ 𝑧 𝑧 : ∅ –onto→ ∅ |
| 13 |
|
foeq2 |
⊢ ( 𝑦 = ∅ → ( 𝑧 : 𝑦 –onto→ ∅ ↔ 𝑧 : ∅ –onto→ ∅ ) ) |
| 14 |
13
|
exbidv |
⊢ ( 𝑦 = ∅ → ( ∃ 𝑧 𝑧 : 𝑦 –onto→ ∅ ↔ ∃ 𝑧 𝑧 : ∅ –onto→ ∅ ) ) |
| 15 |
14
|
rspcev |
⊢ ( ( ∅ ∈ 𝒫 𝑌 ∧ ∃ 𝑧 𝑧 : ∅ –onto→ ∅ ) → ∃ 𝑦 ∈ 𝒫 𝑌 ∃ 𝑧 𝑧 : 𝑦 –onto→ ∅ ) |
| 16 |
6 12 15
|
mp2an |
⊢ ∃ 𝑦 ∈ 𝒫 𝑌 ∃ 𝑧 𝑧 : 𝑦 –onto→ ∅ |
| 17 |
|
foeq3 |
⊢ ( 𝑋 = ∅ → ( 𝑧 : 𝑦 –onto→ 𝑋 ↔ 𝑧 : 𝑦 –onto→ ∅ ) ) |
| 18 |
17
|
exbidv |
⊢ ( 𝑋 = ∅ → ( ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 ↔ ∃ 𝑧 𝑧 : 𝑦 –onto→ ∅ ) ) |
| 19 |
18
|
rexbidv |
⊢ ( 𝑋 = ∅ → ( ∃ 𝑦 ∈ 𝒫 𝑌 ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 ↔ ∃ 𝑦 ∈ 𝒫 𝑌 ∃ 𝑧 𝑧 : 𝑦 –onto→ ∅ ) ) |
| 20 |
16 19
|
mpbiri |
⊢ ( 𝑋 = ∅ → ∃ 𝑦 ∈ 𝒫 𝑌 ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 ) |
| 21 |
20
|
adantl |
⊢ ( ( 𝑌 ∈ V ∧ 𝑋 = ∅ ) → ∃ 𝑦 ∈ 𝒫 𝑌 ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 ) |
| 22 |
5 21
|
2thd |
⊢ ( ( 𝑌 ∈ V ∧ 𝑋 = ∅ ) → ( 𝑋 ≼* 𝑌 ↔ ∃ 𝑦 ∈ 𝒫 𝑌 ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 ) ) |
| 23 |
|
brwdomn0 |
⊢ ( 𝑋 ≠ ∅ → ( 𝑋 ≼* 𝑌 ↔ ∃ 𝑥 𝑥 : 𝑌 –onto→ 𝑋 ) ) |
| 24 |
23
|
adantl |
⊢ ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) → ( 𝑋 ≼* 𝑌 ↔ ∃ 𝑥 𝑥 : 𝑌 –onto→ 𝑋 ) ) |
| 25 |
|
foeq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 : 𝑌 –onto→ 𝑋 ↔ 𝑧 : 𝑌 –onto→ 𝑋 ) ) |
| 26 |
25
|
cbvexvw |
⊢ ( ∃ 𝑥 𝑥 : 𝑌 –onto→ 𝑋 ↔ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) |
| 27 |
|
pwidg |
⊢ ( 𝑌 ∈ V → 𝑌 ∈ 𝒫 𝑌 ) |
| 28 |
27
|
ad2antrr |
⊢ ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) → 𝑌 ∈ 𝒫 𝑌 ) |
| 29 |
|
foeq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑧 : 𝑦 –onto→ 𝑋 ↔ 𝑧 : 𝑌 –onto→ 𝑋 ) ) |
| 30 |
29
|
exbidv |
⊢ ( 𝑦 = 𝑌 → ( ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 ↔ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) |
| 31 |
30
|
rspcev |
⊢ ( ( 𝑌 ∈ 𝒫 𝑌 ∧ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) → ∃ 𝑦 ∈ 𝒫 𝑌 ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 ) |
| 32 |
28 31
|
sylancom |
⊢ ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) → ∃ 𝑦 ∈ 𝒫 𝑌 ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 ) |
| 33 |
32
|
ex |
⊢ ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) → ( ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 → ∃ 𝑦 ∈ 𝒫 𝑌 ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 ) ) |
| 34 |
26 33
|
biimtrid |
⊢ ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) → ( ∃ 𝑥 𝑥 : 𝑌 –onto→ 𝑋 → ∃ 𝑦 ∈ 𝒫 𝑌 ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 ) ) |
| 35 |
|
n0 |
⊢ ( 𝑋 ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ 𝑋 ) |
| 36 |
35
|
biimpi |
⊢ ( 𝑋 ≠ ∅ → ∃ 𝑤 𝑤 ∈ 𝑋 ) |
| 37 |
36
|
ad2antlr |
⊢ ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) → ∃ 𝑤 𝑤 ∈ 𝑋 ) |
| 38 |
|
vex |
⊢ 𝑧 ∈ V |
| 39 |
|
difexg |
⊢ ( 𝑌 ∈ V → ( 𝑌 ∖ 𝑦 ) ∈ V ) |
| 40 |
|
vsnex |
⊢ { 𝑤 } ∈ V |
| 41 |
|
xpexg |
⊢ ( ( ( 𝑌 ∖ 𝑦 ) ∈ V ∧ { 𝑤 } ∈ V ) → ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ∈ V ) |
| 42 |
39 40 41
|
sylancl |
⊢ ( 𝑌 ∈ V → ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ∈ V ) |
| 43 |
|
unexg |
⊢ ( ( 𝑧 ∈ V ∧ ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ∈ V ) → ( 𝑧 ∪ ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) ∈ V ) |
| 44 |
38 42 43
|
sylancr |
⊢ ( 𝑌 ∈ V → ( 𝑧 ∪ ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) ∈ V ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) → ( 𝑧 ∪ ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) ∈ V ) |
| 46 |
45
|
ad2antrr |
⊢ ( ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝑧 ∪ ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) ∈ V ) |
| 47 |
|
fofn |
⊢ ( 𝑧 : 𝑦 –onto→ 𝑋 → 𝑧 Fn 𝑦 ) |
| 48 |
47
|
adantl |
⊢ ( ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) → 𝑧 Fn 𝑦 ) |
| 49 |
48
|
ad2antlr |
⊢ ( ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) ∧ 𝑤 ∈ 𝑋 ) → 𝑧 Fn 𝑦 ) |
| 50 |
|
vex |
⊢ 𝑤 ∈ V |
| 51 |
|
fnconstg |
⊢ ( 𝑤 ∈ V → ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) Fn ( 𝑌 ∖ 𝑦 ) ) |
| 52 |
50 51
|
mp1i |
⊢ ( ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) Fn ( 𝑌 ∖ 𝑦 ) ) |
| 53 |
|
disjdif |
⊢ ( 𝑦 ∩ ( 𝑌 ∖ 𝑦 ) ) = ∅ |
| 54 |
53
|
a1i |
⊢ ( ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝑦 ∩ ( 𝑌 ∖ 𝑦 ) ) = ∅ ) |
| 55 |
49 52 54
|
fnund |
⊢ ( ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝑧 ∪ ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) Fn ( 𝑦 ∪ ( 𝑌 ∖ 𝑦 ) ) ) |
| 56 |
|
elpwi |
⊢ ( 𝑦 ∈ 𝒫 𝑌 → 𝑦 ⊆ 𝑌 ) |
| 57 |
|
undif |
⊢ ( 𝑦 ⊆ 𝑌 ↔ ( 𝑦 ∪ ( 𝑌 ∖ 𝑦 ) ) = 𝑌 ) |
| 58 |
56 57
|
sylib |
⊢ ( 𝑦 ∈ 𝒫 𝑌 → ( 𝑦 ∪ ( 𝑌 ∖ 𝑦 ) ) = 𝑌 ) |
| 59 |
58
|
ad2antrl |
⊢ ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) → ( 𝑦 ∪ ( 𝑌 ∖ 𝑦 ) ) = 𝑌 ) |
| 60 |
59
|
adantr |
⊢ ( ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝑦 ∪ ( 𝑌 ∖ 𝑦 ) ) = 𝑌 ) |
| 61 |
60
|
fneq2d |
⊢ ( ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝑧 ∪ ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) Fn ( 𝑦 ∪ ( 𝑌 ∖ 𝑦 ) ) ↔ ( 𝑧 ∪ ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) Fn 𝑌 ) ) |
| 62 |
55 61
|
mpbid |
⊢ ( ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝑧 ∪ ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) Fn 𝑌 ) |
| 63 |
|
rnun |
⊢ ran ( 𝑧 ∪ ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) = ( ran 𝑧 ∪ ran ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) |
| 64 |
|
forn |
⊢ ( 𝑧 : 𝑦 –onto→ 𝑋 → ran 𝑧 = 𝑋 ) |
| 65 |
64
|
ad2antll |
⊢ ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) → ran 𝑧 = 𝑋 ) |
| 66 |
65
|
adantr |
⊢ ( ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) ∧ 𝑤 ∈ 𝑋 ) → ran 𝑧 = 𝑋 ) |
| 67 |
66
|
uneq1d |
⊢ ( ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) ∧ 𝑤 ∈ 𝑋 ) → ( ran 𝑧 ∪ ran ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) = ( 𝑋 ∪ ran ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) ) |
| 68 |
|
fconst6g |
⊢ ( 𝑤 ∈ 𝑋 → ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) : ( 𝑌 ∖ 𝑦 ) ⟶ 𝑋 ) |
| 69 |
68
|
frnd |
⊢ ( 𝑤 ∈ 𝑋 → ran ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ⊆ 𝑋 ) |
| 70 |
69
|
adantl |
⊢ ( ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) ∧ 𝑤 ∈ 𝑋 ) → ran ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ⊆ 𝑋 ) |
| 71 |
|
ssequn2 |
⊢ ( ran ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ⊆ 𝑋 ↔ ( 𝑋 ∪ ran ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) = 𝑋 ) |
| 72 |
70 71
|
sylib |
⊢ ( ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝑋 ∪ ran ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) = 𝑋 ) |
| 73 |
67 72
|
eqtrd |
⊢ ( ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) ∧ 𝑤 ∈ 𝑋 ) → ( ran 𝑧 ∪ ran ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) = 𝑋 ) |
| 74 |
63 73
|
eqtrid |
⊢ ( ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) ∧ 𝑤 ∈ 𝑋 ) → ran ( 𝑧 ∪ ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) = 𝑋 ) |
| 75 |
|
df-fo |
⊢ ( ( 𝑧 ∪ ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) : 𝑌 –onto→ 𝑋 ↔ ( ( 𝑧 ∪ ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) Fn 𝑌 ∧ ran ( 𝑧 ∪ ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) = 𝑋 ) ) |
| 76 |
62 74 75
|
sylanbrc |
⊢ ( ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝑧 ∪ ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) : 𝑌 –onto→ 𝑋 ) |
| 77 |
|
foeq1 |
⊢ ( 𝑥 = ( 𝑧 ∪ ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) → ( 𝑥 : 𝑌 –onto→ 𝑋 ↔ ( 𝑧 ∪ ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) : 𝑌 –onto→ 𝑋 ) ) |
| 78 |
46 76 77
|
spcedv |
⊢ ( ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) ∧ 𝑤 ∈ 𝑋 ) → ∃ 𝑥 𝑥 : 𝑌 –onto→ 𝑋 ) |
| 79 |
37 78
|
exlimddv |
⊢ ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) → ∃ 𝑥 𝑥 : 𝑌 –onto→ 𝑋 ) |
| 80 |
79
|
expr |
⊢ ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → ( 𝑧 : 𝑦 –onto→ 𝑋 → ∃ 𝑥 𝑥 : 𝑌 –onto→ 𝑋 ) ) |
| 81 |
80
|
exlimdv |
⊢ ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → ( ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 → ∃ 𝑥 𝑥 : 𝑌 –onto→ 𝑋 ) ) |
| 82 |
81
|
rexlimdva |
⊢ ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) → ( ∃ 𝑦 ∈ 𝒫 𝑌 ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 → ∃ 𝑥 𝑥 : 𝑌 –onto→ 𝑋 ) ) |
| 83 |
34 82
|
impbid |
⊢ ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) → ( ∃ 𝑥 𝑥 : 𝑌 –onto→ 𝑋 ↔ ∃ 𝑦 ∈ 𝒫 𝑌 ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 ) ) |
| 84 |
24 83
|
bitrd |
⊢ ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) → ( 𝑋 ≼* 𝑌 ↔ ∃ 𝑦 ∈ 𝒫 𝑌 ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 ) ) |
| 85 |
22 84
|
pm2.61dane |
⊢ ( 𝑌 ∈ V → ( 𝑋 ≼* 𝑌 ↔ ∃ 𝑦 ∈ 𝒫 𝑌 ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 ) ) |
| 86 |
1 85
|
syl |
⊢ ( 𝑌 ∈ 𝑉 → ( 𝑋 ≼* 𝑌 ↔ ∃ 𝑦 ∈ 𝒫 𝑌 ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 ) ) |