Metamath Proof Explorer


Theorem cncmp

Description: Compactness is respected by a continuous onto map. (Contributed by Jeff Hankins, 12-Jul-2009) (Proof shortened by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypothesis cncmp.2 𝑌 = 𝐾
Assertion cncmp ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐾 ∈ Comp )

Proof

Step Hyp Ref Expression
1 cncmp.2 𝑌 = 𝐾
2 cntop2 ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top )
3 2 3ad2ant3 ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐾 ∈ Top )
4 elpwi ( 𝑢 ∈ 𝒫 𝐾𝑢𝐾 )
5 simpl1 ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) → 𝐽 ∈ Comp )
6 simpl3 ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
7 simprl ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) → 𝑢𝐾 )
8 7 sselda ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) ∧ 𝑦𝑢 ) → 𝑦𝐾 )
9 cnima ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑦𝐾 ) → ( 𝐹𝑦 ) ∈ 𝐽 )
10 6 8 9 syl2an2r ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) ∧ 𝑦𝑢 ) → ( 𝐹𝑦 ) ∈ 𝐽 )
11 10 fmpttd ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) → ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) : 𝑢𝐽 )
12 11 frnd ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) → ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) ⊆ 𝐽 )
13 simprr ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) → 𝑌 = 𝑢 )
14 13 imaeq2d ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) → ( 𝐹𝑌 ) = ( 𝐹 𝑢 ) )
15 eqid 𝐽 = 𝐽
16 15 1 cnf ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : 𝐽𝑌 )
17 6 16 syl ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) → 𝐹 : 𝐽𝑌 )
18 fimacnv ( 𝐹 : 𝐽𝑌 → ( 𝐹𝑌 ) = 𝐽 )
19 17 18 syl ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) → ( 𝐹𝑌 ) = 𝐽 )
20 10 ralrimiva ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) → ∀ 𝑦𝑢 ( 𝐹𝑦 ) ∈ 𝐽 )
21 dfiun2g ( ∀ 𝑦𝑢 ( 𝐹𝑦 ) ∈ 𝐽 𝑦𝑢 ( 𝐹𝑦 ) = { 𝑥 ∣ ∃ 𝑦𝑢 𝑥 = ( 𝐹𝑦 ) } )
22 20 21 syl ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) → 𝑦𝑢 ( 𝐹𝑦 ) = { 𝑥 ∣ ∃ 𝑦𝑢 𝑥 = ( 𝐹𝑦 ) } )
23 imauni ( 𝐹 𝑢 ) = 𝑦𝑢 ( 𝐹𝑦 )
24 eqid ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) = ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) )
25 24 rnmpt ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) = { 𝑥 ∣ ∃ 𝑦𝑢 𝑥 = ( 𝐹𝑦 ) }
26 25 unieqi ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) = { 𝑥 ∣ ∃ 𝑦𝑢 𝑥 = ( 𝐹𝑦 ) }
27 22 23 26 3eqtr4g ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) → ( 𝐹 𝑢 ) = ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) )
28 14 19 27 3eqtr3d ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) → 𝐽 = ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) )
29 15 cmpcov ( ( 𝐽 ∈ Comp ∧ ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) ⊆ 𝐽 𝐽 = ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) ) → ∃ 𝑠 ∈ ( 𝒫 ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) ∩ Fin ) 𝐽 = 𝑠 )
30 5 12 28 29 syl3anc ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) → ∃ 𝑠 ∈ ( 𝒫 ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) ∩ Fin ) 𝐽 = 𝑠 )
31 elfpw ( 𝑠 ∈ ( 𝒫 ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) ∩ Fin ) ↔ ( 𝑠 ⊆ ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) ∧ 𝑠 ∈ Fin ) )
32 simprll ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ 𝐽 = 𝑠 ) ) → 𝑠 ⊆ ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) )
33 32 sselda ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ 𝐽 = 𝑠 ) ) ∧ 𝑐𝑠 ) → 𝑐 ∈ ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) )
34 simpll2 ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) ∧ 𝑦𝑢 ) → 𝐹 : 𝑋onto𝑌 )
35 elssuni ( 𝑦𝐾𝑦 𝐾 )
36 35 1 sseqtrrdi ( 𝑦𝐾𝑦𝑌 )
37 8 36 syl ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) ∧ 𝑦𝑢 ) → 𝑦𝑌 )
38 foimacnv ( ( 𝐹 : 𝑋onto𝑌𝑦𝑌 ) → ( 𝐹 “ ( 𝐹𝑦 ) ) = 𝑦 )
39 34 37 38 syl2anc ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) ∧ 𝑦𝑢 ) → ( 𝐹 “ ( 𝐹𝑦 ) ) = 𝑦 )
40 simpr ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) ∧ 𝑦𝑢 ) → 𝑦𝑢 )
41 39 40 eqeltrd ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) ∧ 𝑦𝑢 ) → ( 𝐹 “ ( 𝐹𝑦 ) ) ∈ 𝑢 )
42 41 ralrimiva ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) → ∀ 𝑦𝑢 ( 𝐹 “ ( 𝐹𝑦 ) ) ∈ 𝑢 )
43 imaeq2 ( 𝑐 = ( 𝐹𝑦 ) → ( 𝐹𝑐 ) = ( 𝐹 “ ( 𝐹𝑦 ) ) )
44 43 eleq1d ( 𝑐 = ( 𝐹𝑦 ) → ( ( 𝐹𝑐 ) ∈ 𝑢 ↔ ( 𝐹 “ ( 𝐹𝑦 ) ) ∈ 𝑢 ) )
45 24 44 ralrnmptw ( ∀ 𝑦𝑢 ( 𝐹𝑦 ) ∈ 𝐽 → ( ∀ 𝑐 ∈ ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) ( 𝐹𝑐 ) ∈ 𝑢 ↔ ∀ 𝑦𝑢 ( 𝐹 “ ( 𝐹𝑦 ) ) ∈ 𝑢 ) )
46 20 45 syl ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) → ( ∀ 𝑐 ∈ ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) ( 𝐹𝑐 ) ∈ 𝑢 ↔ ∀ 𝑦𝑢 ( 𝐹 “ ( 𝐹𝑦 ) ) ∈ 𝑢 ) )
47 42 46 mpbird ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) → ∀ 𝑐 ∈ ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) ( 𝐹𝑐 ) ∈ 𝑢 )
48 47 adantr ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ 𝐽 = 𝑠 ) ) → ∀ 𝑐 ∈ ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) ( 𝐹𝑐 ) ∈ 𝑢 )
49 48 r19.21bi ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ 𝐽 = 𝑠 ) ) ∧ 𝑐 ∈ ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) ) → ( 𝐹𝑐 ) ∈ 𝑢 )
50 33 49 syldan ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ 𝐽 = 𝑠 ) ) ∧ 𝑐𝑠 ) → ( 𝐹𝑐 ) ∈ 𝑢 )
51 50 fmpttd ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ 𝐽 = 𝑠 ) ) → ( 𝑐𝑠 ↦ ( 𝐹𝑐 ) ) : 𝑠𝑢 )
52 51 frnd ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ 𝐽 = 𝑠 ) ) → ran ( 𝑐𝑠 ↦ ( 𝐹𝑐 ) ) ⊆ 𝑢 )
53 simprlr ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ 𝐽 = 𝑠 ) ) → 𝑠 ∈ Fin )
54 eqid ( 𝑐𝑠 ↦ ( 𝐹𝑐 ) ) = ( 𝑐𝑠 ↦ ( 𝐹𝑐 ) )
55 54 rnmpt ran ( 𝑐𝑠 ↦ ( 𝐹𝑐 ) ) = { 𝑑 ∣ ∃ 𝑐𝑠 𝑑 = ( 𝐹𝑐 ) }
56 abrexfi ( 𝑠 ∈ Fin → { 𝑑 ∣ ∃ 𝑐𝑠 𝑑 = ( 𝐹𝑐 ) } ∈ Fin )
57 55 56 eqeltrid ( 𝑠 ∈ Fin → ran ( 𝑐𝑠 ↦ ( 𝐹𝑐 ) ) ∈ Fin )
58 53 57 syl ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ 𝐽 = 𝑠 ) ) → ran ( 𝑐𝑠 ↦ ( 𝐹𝑐 ) ) ∈ Fin )
59 elfpw ( ran ( 𝑐𝑠 ↦ ( 𝐹𝑐 ) ) ∈ ( 𝒫 𝑢 ∩ Fin ) ↔ ( ran ( 𝑐𝑠 ↦ ( 𝐹𝑐 ) ) ⊆ 𝑢 ∧ ran ( 𝑐𝑠 ↦ ( 𝐹𝑐 ) ) ∈ Fin ) )
60 52 58 59 sylanbrc ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ 𝐽 = 𝑠 ) ) → ran ( 𝑐𝑠 ↦ ( 𝐹𝑐 ) ) ∈ ( 𝒫 𝑢 ∩ Fin ) )
61 17 adantr ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ 𝐽 = 𝑠 ) ) → 𝐹 : 𝐽𝑌 )
62 61 fdmd ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ 𝐽 = 𝑠 ) ) → dom 𝐹 = 𝐽 )
63 simpll2 ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ 𝐽 = 𝑠 ) ) → 𝐹 : 𝑋onto𝑌 )
64 fof ( 𝐹 : 𝑋onto𝑌𝐹 : 𝑋𝑌 )
65 fdm ( 𝐹 : 𝑋𝑌 → dom 𝐹 = 𝑋 )
66 63 64 65 3syl ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ 𝐽 = 𝑠 ) ) → dom 𝐹 = 𝑋 )
67 simprr ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ 𝐽 = 𝑠 ) ) → 𝐽 = 𝑠 )
68 62 66 67 3eqtr3d ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ 𝐽 = 𝑠 ) ) → 𝑋 = 𝑠 )
69 68 imaeq2d ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ 𝐽 = 𝑠 ) ) → ( 𝐹𝑋 ) = ( 𝐹 𝑠 ) )
70 foima ( 𝐹 : 𝑋onto𝑌 → ( 𝐹𝑋 ) = 𝑌 )
71 63 70 syl ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ 𝐽 = 𝑠 ) ) → ( 𝐹𝑋 ) = 𝑌 )
72 50 ralrimiva ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ 𝐽 = 𝑠 ) ) → ∀ 𝑐𝑠 ( 𝐹𝑐 ) ∈ 𝑢 )
73 dfiun2g ( ∀ 𝑐𝑠 ( 𝐹𝑐 ) ∈ 𝑢 𝑐𝑠 ( 𝐹𝑐 ) = { 𝑑 ∣ ∃ 𝑐𝑠 𝑑 = ( 𝐹𝑐 ) } )
74 72 73 syl ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ 𝐽 = 𝑠 ) ) → 𝑐𝑠 ( 𝐹𝑐 ) = { 𝑑 ∣ ∃ 𝑐𝑠 𝑑 = ( 𝐹𝑐 ) } )
75 imauni ( 𝐹 𝑠 ) = 𝑐𝑠 ( 𝐹𝑐 )
76 55 unieqi ran ( 𝑐𝑠 ↦ ( 𝐹𝑐 ) ) = { 𝑑 ∣ ∃ 𝑐𝑠 𝑑 = ( 𝐹𝑐 ) }
77 74 75 76 3eqtr4g ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ 𝐽 = 𝑠 ) ) → ( 𝐹 𝑠 ) = ran ( 𝑐𝑠 ↦ ( 𝐹𝑐 ) ) )
78 69 71 77 3eqtr3d ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ 𝐽 = 𝑠 ) ) → 𝑌 = ran ( 𝑐𝑠 ↦ ( 𝐹𝑐 ) ) )
79 unieq ( 𝑣 = ran ( 𝑐𝑠 ↦ ( 𝐹𝑐 ) ) → 𝑣 = ran ( 𝑐𝑠 ↦ ( 𝐹𝑐 ) ) )
80 79 rspceeqv ( ( ran ( 𝑐𝑠 ↦ ( 𝐹𝑐 ) ) ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ 𝑌 = ran ( 𝑐𝑠 ↦ ( 𝐹𝑐 ) ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑌 = 𝑣 )
81 60 78 80 syl2anc ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ 𝐽 = 𝑠 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑌 = 𝑣 )
82 81 expr ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) ∧ ( 𝑠 ⊆ ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) ∧ 𝑠 ∈ Fin ) ) → ( 𝐽 = 𝑠 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑌 = 𝑣 ) )
83 31 82 sylan2b ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) ∧ 𝑠 ∈ ( 𝒫 ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) ∩ Fin ) ) → ( 𝐽 = 𝑠 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑌 = 𝑣 ) )
84 83 rexlimdva ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) → ( ∃ 𝑠 ∈ ( 𝒫 ran ( 𝑦𝑢 ↦ ( 𝐹𝑦 ) ) ∩ Fin ) 𝐽 = 𝑠 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑌 = 𝑣 ) )
85 30 84 mpd ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢𝐾𝑌 = 𝑢 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑌 = 𝑣 )
86 85 expr ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑢𝐾 ) → ( 𝑌 = 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑌 = 𝑣 ) )
87 4 86 sylan2 ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑢 ∈ 𝒫 𝐾 ) → ( 𝑌 = 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑌 = 𝑣 ) )
88 87 ralrimiva ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ∀ 𝑢 ∈ 𝒫 𝐾 ( 𝑌 = 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑌 = 𝑣 ) )
89 1 iscmp ( 𝐾 ∈ Comp ↔ ( 𝐾 ∈ Top ∧ ∀ 𝑢 ∈ 𝒫 𝐾 ( 𝑌 = 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑌 = 𝑣 ) ) )
90 3 88 89 sylanbrc ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋onto𝑌𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐾 ∈ Comp )