Step |
Hyp |
Ref |
Expression |
1 |
|
comet.1 |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
2 |
|
comet.2 |
⊢ ( 𝜑 → 𝐹 : ( 0 [,] +∞ ) ⟶ ℝ* ) |
3 |
|
comet.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] +∞ ) ) → ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ) |
4 |
|
comet.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ) → ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
5 |
|
comet.5 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ) → ( 𝐹 ‘ ( 𝑥 +𝑒 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) +𝑒 ( 𝐹 ‘ 𝑦 ) ) ) |
6 |
1
|
elfvexd |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
7 |
|
xmetf |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) |
8 |
1 7
|
syl |
⊢ ( 𝜑 → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) |
9 |
8
|
ffnd |
⊢ ( 𝜑 → 𝐷 Fn ( 𝑋 × 𝑋 ) ) |
10 |
|
xmetcl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑎 𝐷 𝑏 ) ∈ ℝ* ) |
11 |
|
xmetge0 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → 0 ≤ ( 𝑎 𝐷 𝑏 ) ) |
12 |
|
elxrge0 |
⊢ ( ( 𝑎 𝐷 𝑏 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝑎 𝐷 𝑏 ) ∈ ℝ* ∧ 0 ≤ ( 𝑎 𝐷 𝑏 ) ) ) |
13 |
10 11 12
|
sylanbrc |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑎 𝐷 𝑏 ) ∈ ( 0 [,] +∞ ) ) |
14 |
13
|
3expb |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑎 𝐷 𝑏 ) ∈ ( 0 [,] +∞ ) ) |
15 |
1 14
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑎 𝐷 𝑏 ) ∈ ( 0 [,] +∞ ) ) |
16 |
15
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( 𝑎 𝐷 𝑏 ) ∈ ( 0 [,] +∞ ) ) |
17 |
|
ffnov |
⊢ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] +∞ ) ↔ ( 𝐷 Fn ( 𝑋 × 𝑋 ) ∧ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( 𝑎 𝐷 𝑏 ) ∈ ( 0 [,] +∞ ) ) ) |
18 |
9 16 17
|
sylanbrc |
⊢ ( 𝜑 → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] +∞ ) ) |
19 |
2 18
|
fcod |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐷 ) : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) |
20 |
|
opelxpi |
⊢ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → 〈 𝑎 , 𝑏 〉 ∈ ( 𝑋 × 𝑋 ) ) |
21 |
|
fvco3 |
⊢ ( ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝑋 × 𝑋 ) ) → ( ( 𝐹 ∘ 𝐷 ) ‘ 〈 𝑎 , 𝑏 〉 ) = ( 𝐹 ‘ ( 𝐷 ‘ 〈 𝑎 , 𝑏 〉 ) ) ) |
22 |
8 20 21
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝐹 ∘ 𝐷 ) ‘ 〈 𝑎 , 𝑏 〉 ) = ( 𝐹 ‘ ( 𝐷 ‘ 〈 𝑎 , 𝑏 〉 ) ) ) |
23 |
|
df-ov |
⊢ ( 𝑎 ( 𝐹 ∘ 𝐷 ) 𝑏 ) = ( ( 𝐹 ∘ 𝐷 ) ‘ 〈 𝑎 , 𝑏 〉 ) |
24 |
|
df-ov |
⊢ ( 𝑎 𝐷 𝑏 ) = ( 𝐷 ‘ 〈 𝑎 , 𝑏 〉 ) |
25 |
24
|
fveq2i |
⊢ ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) = ( 𝐹 ‘ ( 𝐷 ‘ 〈 𝑎 , 𝑏 〉 ) ) |
26 |
22 23 25
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑎 ( 𝐹 ∘ 𝐷 ) 𝑏 ) = ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) ) |
27 |
26
|
eqeq1d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝑎 ( 𝐹 ∘ 𝐷 ) 𝑏 ) = 0 ↔ ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) = 0 ) ) |
28 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑎 𝐷 𝑏 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) ) |
29 |
28
|
eqeq1d |
⊢ ( 𝑥 = ( 𝑎 𝐷 𝑏 ) → ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) = 0 ) ) |
30 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝑎 𝐷 𝑏 ) → ( 𝑥 = 0 ↔ ( 𝑎 𝐷 𝑏 ) = 0 ) ) |
31 |
29 30
|
bibi12d |
⊢ ( 𝑥 = ( 𝑎 𝐷 𝑏 ) → ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ↔ ( ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) = 0 ↔ ( 𝑎 𝐷 𝑏 ) = 0 ) ) ) |
32 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 0 [,] +∞ ) ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ) |
33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ∀ 𝑥 ∈ ( 0 [,] +∞ ) ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ) |
34 |
31 33 15
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) = 0 ↔ ( 𝑎 𝐷 𝑏 ) = 0 ) ) |
35 |
|
xmeteq0 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( ( 𝑎 𝐷 𝑏 ) = 0 ↔ 𝑎 = 𝑏 ) ) |
36 |
35
|
3expb |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝑎 𝐷 𝑏 ) = 0 ↔ 𝑎 = 𝑏 ) ) |
37 |
1 36
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝑎 𝐷 𝑏 ) = 0 ↔ 𝑎 = 𝑏 ) ) |
38 |
27 34 37
|
3bitrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝑎 ( 𝐹 ∘ 𝐷 ) 𝑏 ) = 0 ↔ 𝑎 = 𝑏 ) ) |
39 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → 𝐹 : ( 0 [,] +∞ ) ⟶ ℝ* ) |
40 |
15
|
3adantr3 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑎 𝐷 𝑏 ) ∈ ( 0 [,] +∞ ) ) |
41 |
39 40
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) ∈ ℝ* ) |
42 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] +∞ ) ) |
43 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → 𝑐 ∈ 𝑋 ) |
44 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → 𝑎 ∈ 𝑋 ) |
45 |
42 43 44
|
fovrnd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑐 𝐷 𝑎 ) ∈ ( 0 [,] +∞ ) ) |
46 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → 𝑏 ∈ 𝑋 ) |
47 |
42 43 46
|
fovrnd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑐 𝐷 𝑏 ) ∈ ( 0 [,] +∞ ) ) |
48 |
|
ge0xaddcl |
⊢ ( ( ( 𝑐 𝐷 𝑎 ) ∈ ( 0 [,] +∞ ) ∧ ( 𝑐 𝐷 𝑏 ) ∈ ( 0 [,] +∞ ) ) → ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ∈ ( 0 [,] +∞ ) ) |
49 |
45 47 48
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ∈ ( 0 [,] +∞ ) ) |
50 |
39 49
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ∈ ℝ* ) |
51 |
39 45
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) ) ∈ ℝ* ) |
52 |
39 47
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑐 𝐷 𝑏 ) ) ∈ ℝ* ) |
53 |
51 52
|
xaddcld |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) ) +𝑒 ( 𝐹 ‘ ( 𝑐 𝐷 𝑏 ) ) ) ∈ ℝ* ) |
54 |
|
3anrot |
⊢ ( ( 𝑐 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ↔ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) |
55 |
|
xmettri2 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑐 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) |
56 |
54 55
|
sylan2br |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) |
57 |
1 56
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) |
58 |
4
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 0 [,] +∞ ) ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
59 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ∀ 𝑥 ∈ ( 0 [,] +∞ ) ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
60 |
|
breq1 |
⊢ ( 𝑥 = ( 𝑎 𝐷 𝑏 ) → ( 𝑥 ≤ 𝑦 ↔ ( 𝑎 𝐷 𝑏 ) ≤ 𝑦 ) ) |
61 |
28
|
breq1d |
⊢ ( 𝑥 = ( 𝑎 𝐷 𝑏 ) → ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
62 |
60 61
|
imbi12d |
⊢ ( 𝑥 = ( 𝑎 𝐷 𝑏 ) → ( ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( 𝑎 𝐷 𝑏 ) ≤ 𝑦 → ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ) |
63 |
|
breq2 |
⊢ ( 𝑦 = ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) → ( ( 𝑎 𝐷 𝑏 ) ≤ 𝑦 ↔ ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) |
64 |
|
fveq2 |
⊢ ( 𝑦 = ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) |
65 |
64
|
breq2d |
⊢ ( 𝑦 = ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) → ( ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) ≤ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) ≤ ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) ) |
66 |
63 65
|
imbi12d |
⊢ ( 𝑦 = ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) → ( ( ( 𝑎 𝐷 𝑏 ) ≤ 𝑦 → ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) ≤ ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) → ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) ≤ ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) ) ) |
67 |
62 66
|
rspc2va |
⊢ ( ( ( ( 𝑎 𝐷 𝑏 ) ∈ ( 0 [,] +∞ ) ∧ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ∈ ( 0 [,] +∞ ) ) ∧ ∀ 𝑥 ∈ ( 0 [,] +∞ ) ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) → ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) ≤ ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) ) |
68 |
40 49 59 67
|
syl21anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) → ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) ≤ ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) ) |
69 |
57 68
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) ≤ ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) |
70 |
5
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 0 [,] +∞ ) ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝐹 ‘ ( 𝑥 +𝑒 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) +𝑒 ( 𝐹 ‘ 𝑦 ) ) ) |
71 |
70
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ∀ 𝑥 ∈ ( 0 [,] +∞ ) ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝐹 ‘ ( 𝑥 +𝑒 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) +𝑒 ( 𝐹 ‘ 𝑦 ) ) ) |
72 |
|
fvoveq1 |
⊢ ( 𝑥 = ( 𝑐 𝐷 𝑎 ) → ( 𝐹 ‘ ( 𝑥 +𝑒 𝑦 ) ) = ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 ) +𝑒 𝑦 ) ) ) |
73 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑐 𝐷 𝑎 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) ) ) |
74 |
73
|
oveq1d |
⊢ ( 𝑥 = ( 𝑐 𝐷 𝑎 ) → ( ( 𝐹 ‘ 𝑥 ) +𝑒 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) ) +𝑒 ( 𝐹 ‘ 𝑦 ) ) ) |
75 |
72 74
|
breq12d |
⊢ ( 𝑥 = ( 𝑐 𝐷 𝑎 ) → ( ( 𝐹 ‘ ( 𝑥 +𝑒 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) +𝑒 ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 ) +𝑒 𝑦 ) ) ≤ ( ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) ) +𝑒 ( 𝐹 ‘ 𝑦 ) ) ) ) |
76 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝑐 𝐷 𝑏 ) → ( ( 𝑐 𝐷 𝑎 ) +𝑒 𝑦 ) = ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) |
77 |
76
|
fveq2d |
⊢ ( 𝑦 = ( 𝑐 𝐷 𝑏 ) → ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 ) +𝑒 𝑦 ) ) = ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) |
78 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑐 𝐷 𝑏 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑐 𝐷 𝑏 ) ) ) |
79 |
78
|
oveq2d |
⊢ ( 𝑦 = ( 𝑐 𝐷 𝑏 ) → ( ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) ) +𝑒 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) ) +𝑒 ( 𝐹 ‘ ( 𝑐 𝐷 𝑏 ) ) ) ) |
80 |
77 79
|
breq12d |
⊢ ( 𝑦 = ( 𝑐 𝐷 𝑏 ) → ( ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 ) +𝑒 𝑦 ) ) ≤ ( ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) ) +𝑒 ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ≤ ( ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) ) +𝑒 ( 𝐹 ‘ ( 𝑐 𝐷 𝑏 ) ) ) ) ) |
81 |
75 80
|
rspc2va |
⊢ ( ( ( ( 𝑐 𝐷 𝑎 ) ∈ ( 0 [,] +∞ ) ∧ ( 𝑐 𝐷 𝑏 ) ∈ ( 0 [,] +∞ ) ) ∧ ∀ 𝑥 ∈ ( 0 [,] +∞ ) ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝐹 ‘ ( 𝑥 +𝑒 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) +𝑒 ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ≤ ( ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) ) +𝑒 ( 𝐹 ‘ ( 𝑐 𝐷 𝑏 ) ) ) ) |
82 |
45 47 71 81
|
syl21anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ≤ ( ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) ) +𝑒 ( 𝐹 ‘ ( 𝑐 𝐷 𝑏 ) ) ) ) |
83 |
41 50 53 69 82
|
xrletrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) ≤ ( ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) ) +𝑒 ( 𝐹 ‘ ( 𝑐 𝐷 𝑏 ) ) ) ) |
84 |
26
|
3adantr3 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑎 ( 𝐹 ∘ 𝐷 ) 𝑏 ) = ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) ) |
85 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) |
86 |
43 44
|
opelxpd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → 〈 𝑐 , 𝑎 〉 ∈ ( 𝑋 × 𝑋 ) ) |
87 |
85 86
|
fvco3d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( ( 𝐹 ∘ 𝐷 ) ‘ 〈 𝑐 , 𝑎 〉 ) = ( 𝐹 ‘ ( 𝐷 ‘ 〈 𝑐 , 𝑎 〉 ) ) ) |
88 |
|
df-ov |
⊢ ( 𝑐 ( 𝐹 ∘ 𝐷 ) 𝑎 ) = ( ( 𝐹 ∘ 𝐷 ) ‘ 〈 𝑐 , 𝑎 〉 ) |
89 |
|
df-ov |
⊢ ( 𝑐 𝐷 𝑎 ) = ( 𝐷 ‘ 〈 𝑐 , 𝑎 〉 ) |
90 |
89
|
fveq2i |
⊢ ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) ) = ( 𝐹 ‘ ( 𝐷 ‘ 〈 𝑐 , 𝑎 〉 ) ) |
91 |
87 88 90
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑐 ( 𝐹 ∘ 𝐷 ) 𝑎 ) = ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) ) ) |
92 |
43 46
|
opelxpd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → 〈 𝑐 , 𝑏 〉 ∈ ( 𝑋 × 𝑋 ) ) |
93 |
85 92
|
fvco3d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( ( 𝐹 ∘ 𝐷 ) ‘ 〈 𝑐 , 𝑏 〉 ) = ( 𝐹 ‘ ( 𝐷 ‘ 〈 𝑐 , 𝑏 〉 ) ) ) |
94 |
|
df-ov |
⊢ ( 𝑐 ( 𝐹 ∘ 𝐷 ) 𝑏 ) = ( ( 𝐹 ∘ 𝐷 ) ‘ 〈 𝑐 , 𝑏 〉 ) |
95 |
|
df-ov |
⊢ ( 𝑐 𝐷 𝑏 ) = ( 𝐷 ‘ 〈 𝑐 , 𝑏 〉 ) |
96 |
95
|
fveq2i |
⊢ ( 𝐹 ‘ ( 𝑐 𝐷 𝑏 ) ) = ( 𝐹 ‘ ( 𝐷 ‘ 〈 𝑐 , 𝑏 〉 ) ) |
97 |
93 94 96
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑐 ( 𝐹 ∘ 𝐷 ) 𝑏 ) = ( 𝐹 ‘ ( 𝑐 𝐷 𝑏 ) ) ) |
98 |
91 97
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( ( 𝑐 ( 𝐹 ∘ 𝐷 ) 𝑎 ) +𝑒 ( 𝑐 ( 𝐹 ∘ 𝐷 ) 𝑏 ) ) = ( ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) ) +𝑒 ( 𝐹 ‘ ( 𝑐 𝐷 𝑏 ) ) ) ) |
99 |
83 84 98
|
3brtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑎 ( 𝐹 ∘ 𝐷 ) 𝑏 ) ≤ ( ( 𝑐 ( 𝐹 ∘ 𝐷 ) 𝑎 ) +𝑒 ( 𝑐 ( 𝐹 ∘ 𝐷 ) 𝑏 ) ) ) |
100 |
6 19 38 99
|
isxmetd |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐷 ) ∈ ( ∞Met ‘ 𝑋 ) ) |