| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfac5lem.1 |
⊢ 𝐴 = { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) } |
| 2 |
|
dfac5lem.2 |
⊢ ( 𝜑 ↔ ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |
| 3 |
|
vex |
⊢ 𝑧 ∈ V |
| 4 |
|
neeq1 |
⊢ ( 𝑢 = 𝑧 → ( 𝑢 ≠ ∅ ↔ 𝑧 ≠ ∅ ) ) |
| 5 |
|
eqeq1 |
⊢ ( 𝑢 = 𝑧 → ( 𝑢 = ( { 𝑡 } × 𝑡 ) ↔ 𝑧 = ( { 𝑡 } × 𝑡 ) ) ) |
| 6 |
5
|
rexbidv |
⊢ ( 𝑢 = 𝑧 → ( ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ↔ ∃ 𝑡 ∈ ℎ 𝑧 = ( { 𝑡 } × 𝑡 ) ) ) |
| 7 |
4 6
|
anbi12d |
⊢ ( 𝑢 = 𝑧 → ( ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) ↔ ( 𝑧 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑧 = ( { 𝑡 } × 𝑡 ) ) ) ) |
| 8 |
3 7
|
elab |
⊢ ( 𝑧 ∈ { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) } ↔ ( 𝑧 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑧 = ( { 𝑡 } × 𝑡 ) ) ) |
| 9 |
8
|
simplbi |
⊢ ( 𝑧 ∈ { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) } → 𝑧 ≠ ∅ ) |
| 10 |
9 1
|
eleq2s |
⊢ ( 𝑧 ∈ 𝐴 → 𝑧 ≠ ∅ ) |
| 11 |
10
|
rgen |
⊢ ∀ 𝑧 ∈ 𝐴 𝑧 ≠ ∅ |
| 12 |
|
df-an |
⊢ ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝑤 ) ↔ ¬ ( 𝑥 ∈ 𝑧 → ¬ 𝑥 ∈ 𝑤 ) ) |
| 13 |
3 7 1
|
elab2 |
⊢ ( 𝑧 ∈ 𝐴 ↔ ( 𝑧 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑧 = ( { 𝑡 } × 𝑡 ) ) ) |
| 14 |
13
|
simprbi |
⊢ ( 𝑧 ∈ 𝐴 → ∃ 𝑡 ∈ ℎ 𝑧 = ( { 𝑡 } × 𝑡 ) ) |
| 15 |
|
vex |
⊢ 𝑤 ∈ V |
| 16 |
|
neeq1 |
⊢ ( 𝑢 = 𝑤 → ( 𝑢 ≠ ∅ ↔ 𝑤 ≠ ∅ ) ) |
| 17 |
|
eqeq1 |
⊢ ( 𝑢 = 𝑤 → ( 𝑢 = ( { 𝑡 } × 𝑡 ) ↔ 𝑤 = ( { 𝑡 } × 𝑡 ) ) ) |
| 18 |
17
|
rexbidv |
⊢ ( 𝑢 = 𝑤 → ( ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ↔ ∃ 𝑡 ∈ ℎ 𝑤 = ( { 𝑡 } × 𝑡 ) ) ) |
| 19 |
16 18
|
anbi12d |
⊢ ( 𝑢 = 𝑤 → ( ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) ↔ ( 𝑤 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑤 = ( { 𝑡 } × 𝑡 ) ) ) ) |
| 20 |
15 19 1
|
elab2 |
⊢ ( 𝑤 ∈ 𝐴 ↔ ( 𝑤 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑤 = ( { 𝑡 } × 𝑡 ) ) ) |
| 21 |
20
|
simprbi |
⊢ ( 𝑤 ∈ 𝐴 → ∃ 𝑡 ∈ ℎ 𝑤 = ( { 𝑡 } × 𝑡 ) ) |
| 22 |
|
sneq |
⊢ ( 𝑡 = 𝑔 → { 𝑡 } = { 𝑔 } ) |
| 23 |
22
|
xpeq1d |
⊢ ( 𝑡 = 𝑔 → ( { 𝑡 } × 𝑡 ) = ( { 𝑔 } × 𝑡 ) ) |
| 24 |
|
xpeq2 |
⊢ ( 𝑡 = 𝑔 → ( { 𝑔 } × 𝑡 ) = ( { 𝑔 } × 𝑔 ) ) |
| 25 |
23 24
|
eqtrd |
⊢ ( 𝑡 = 𝑔 → ( { 𝑡 } × 𝑡 ) = ( { 𝑔 } × 𝑔 ) ) |
| 26 |
25
|
eqeq2d |
⊢ ( 𝑡 = 𝑔 → ( 𝑤 = ( { 𝑡 } × 𝑡 ) ↔ 𝑤 = ( { 𝑔 } × 𝑔 ) ) ) |
| 27 |
26
|
cbvrexvw |
⊢ ( ∃ 𝑡 ∈ ℎ 𝑤 = ( { 𝑡 } × 𝑡 ) ↔ ∃ 𝑔 ∈ ℎ 𝑤 = ( { 𝑔 } × 𝑔 ) ) |
| 28 |
21 27
|
sylib |
⊢ ( 𝑤 ∈ 𝐴 → ∃ 𝑔 ∈ ℎ 𝑤 = ( { 𝑔 } × 𝑔 ) ) |
| 29 |
|
eleq2 |
⊢ ( 𝑧 = ( { 𝑡 } × 𝑡 ) → ( 𝑥 ∈ 𝑧 ↔ 𝑥 ∈ ( { 𝑡 } × 𝑡 ) ) ) |
| 30 |
|
elxp |
⊢ ( 𝑥 ∈ ( { 𝑡 } × 𝑡 ) ↔ ∃ 𝑢 ∃ 𝑣 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ) |
| 31 |
|
opeq1 |
⊢ ( 𝑢 = 𝑠 → 〈 𝑢 , 𝑣 〉 = 〈 𝑠 , 𝑣 〉 ) |
| 32 |
31
|
eqeq2d |
⊢ ( 𝑢 = 𝑠 → ( 𝑥 = 〈 𝑢 , 𝑣 〉 ↔ 𝑥 = 〈 𝑠 , 𝑣 〉 ) ) |
| 33 |
|
eleq1w |
⊢ ( 𝑢 = 𝑠 → ( 𝑢 ∈ { 𝑡 } ↔ 𝑠 ∈ { 𝑡 } ) ) |
| 34 |
33
|
anbi1d |
⊢ ( 𝑢 = 𝑠 → ( ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ↔ ( 𝑠 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ) |
| 35 |
32 34
|
anbi12d |
⊢ ( 𝑢 = 𝑠 → ( ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ↔ ( 𝑥 = 〈 𝑠 , 𝑣 〉 ∧ ( 𝑠 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ) ) |
| 36 |
35
|
excomimw |
⊢ ( ∃ 𝑢 ∃ 𝑣 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) → ∃ 𝑣 ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ) |
| 37 |
30 36
|
sylbi |
⊢ ( 𝑥 ∈ ( { 𝑡 } × 𝑡 ) → ∃ 𝑣 ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ) |
| 38 |
29 37
|
biimtrdi |
⊢ ( 𝑧 = ( { 𝑡 } × 𝑡 ) → ( 𝑥 ∈ 𝑧 → ∃ 𝑣 ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ) ) |
| 39 |
|
eleq2 |
⊢ ( 𝑤 = ( { 𝑔 } × 𝑔 ) → ( 𝑥 ∈ 𝑤 ↔ 𝑥 ∈ ( { 𝑔 } × 𝑔 ) ) ) |
| 40 |
|
elxp |
⊢ ( 𝑥 ∈ ( { 𝑔 } × 𝑔 ) ↔ ∃ 𝑢 ∃ 𝑦 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) |
| 41 |
|
opeq1 |
⊢ ( 𝑢 = 𝑠 → 〈 𝑢 , 𝑦 〉 = 〈 𝑠 , 𝑦 〉 ) |
| 42 |
41
|
eqeq2d |
⊢ ( 𝑢 = 𝑠 → ( 𝑥 = 〈 𝑢 , 𝑦 〉 ↔ 𝑥 = 〈 𝑠 , 𝑦 〉 ) ) |
| 43 |
|
eleq1w |
⊢ ( 𝑢 = 𝑠 → ( 𝑢 ∈ { 𝑔 } ↔ 𝑠 ∈ { 𝑔 } ) ) |
| 44 |
43
|
anbi1d |
⊢ ( 𝑢 = 𝑠 → ( ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ↔ ( 𝑠 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) |
| 45 |
42 44
|
anbi12d |
⊢ ( 𝑢 = 𝑠 → ( ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ↔ ( 𝑥 = 〈 𝑠 , 𝑦 〉 ∧ ( 𝑠 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) ) |
| 46 |
45
|
excomimw |
⊢ ( ∃ 𝑢 ∃ 𝑦 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) → ∃ 𝑦 ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) |
| 47 |
40 46
|
sylbi |
⊢ ( 𝑥 ∈ ( { 𝑔 } × 𝑔 ) → ∃ 𝑦 ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) |
| 48 |
39 47
|
biimtrdi |
⊢ ( 𝑤 = ( { 𝑔 } × 𝑔 ) → ( 𝑥 ∈ 𝑤 → ∃ 𝑦 ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) ) |
| 49 |
38 48
|
im2anan9 |
⊢ ( ( 𝑧 = ( { 𝑡 } × 𝑡 ) ∧ 𝑤 = ( { 𝑔 } × 𝑔 ) ) → ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝑤 ) → ( ∃ 𝑣 ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ∧ ∃ 𝑦 ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) ) ) |
| 50 |
|
exdistrv |
⊢ ( ∃ 𝑣 ∃ 𝑦 ( ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ∧ ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) ↔ ( ∃ 𝑣 ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ∧ ∃ 𝑦 ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) ) |
| 51 |
49 50
|
imbitrrdi |
⊢ ( ( 𝑧 = ( { 𝑡 } × 𝑡 ) ∧ 𝑤 = ( { 𝑔 } × 𝑔 ) ) → ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝑤 ) → ∃ 𝑣 ∃ 𝑦 ( ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ∧ ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) ) ) |
| 52 |
|
velsn |
⊢ ( 𝑢 ∈ { 𝑡 } ↔ 𝑢 = 𝑡 ) |
| 53 |
|
opeq1 |
⊢ ( 𝑢 = 𝑡 → 〈 𝑢 , 𝑣 〉 = 〈 𝑡 , 𝑣 〉 ) |
| 54 |
53
|
eqeq2d |
⊢ ( 𝑢 = 𝑡 → ( 𝑥 = 〈 𝑢 , 𝑣 〉 ↔ 𝑥 = 〈 𝑡 , 𝑣 〉 ) ) |
| 55 |
54
|
biimpac |
⊢ ( ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ 𝑢 = 𝑡 ) → 𝑥 = 〈 𝑡 , 𝑣 〉 ) |
| 56 |
52 55
|
sylan2b |
⊢ ( ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ 𝑢 ∈ { 𝑡 } ) → 𝑥 = 〈 𝑡 , 𝑣 〉 ) |
| 57 |
56
|
adantrr |
⊢ ( ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) → 𝑥 = 〈 𝑡 , 𝑣 〉 ) |
| 58 |
57
|
exlimiv |
⊢ ( ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) → 𝑥 = 〈 𝑡 , 𝑣 〉 ) |
| 59 |
|
velsn |
⊢ ( 𝑢 ∈ { 𝑔 } ↔ 𝑢 = 𝑔 ) |
| 60 |
|
opeq1 |
⊢ ( 𝑢 = 𝑔 → 〈 𝑢 , 𝑦 〉 = 〈 𝑔 , 𝑦 〉 ) |
| 61 |
60
|
eqeq2d |
⊢ ( 𝑢 = 𝑔 → ( 𝑥 = 〈 𝑢 , 𝑦 〉 ↔ 𝑥 = 〈 𝑔 , 𝑦 〉 ) ) |
| 62 |
61
|
biimpac |
⊢ ( ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ 𝑢 = 𝑔 ) → 𝑥 = 〈 𝑔 , 𝑦 〉 ) |
| 63 |
59 62
|
sylan2b |
⊢ ( ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ 𝑢 ∈ { 𝑔 } ) → 𝑥 = 〈 𝑔 , 𝑦 〉 ) |
| 64 |
63
|
adantrr |
⊢ ( ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) → 𝑥 = 〈 𝑔 , 𝑦 〉 ) |
| 65 |
64
|
exlimiv |
⊢ ( ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) → 𝑥 = 〈 𝑔 , 𝑦 〉 ) |
| 66 |
58 65
|
sylan9req |
⊢ ( ( ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ∧ ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) → 〈 𝑡 , 𝑣 〉 = 〈 𝑔 , 𝑦 〉 ) |
| 67 |
|
vex |
⊢ 𝑡 ∈ V |
| 68 |
|
vex |
⊢ 𝑣 ∈ V |
| 69 |
67 68
|
opth1 |
⊢ ( 〈 𝑡 , 𝑣 〉 = 〈 𝑔 , 𝑦 〉 → 𝑡 = 𝑔 ) |
| 70 |
66 69
|
syl |
⊢ ( ( ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ∧ ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) → 𝑡 = 𝑔 ) |
| 71 |
70
|
exlimivv |
⊢ ( ∃ 𝑣 ∃ 𝑦 ( ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ∧ ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) → 𝑡 = 𝑔 ) |
| 72 |
51 71
|
syl6 |
⊢ ( ( 𝑧 = ( { 𝑡 } × 𝑡 ) ∧ 𝑤 = ( { 𝑔 } × 𝑔 ) ) → ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝑤 ) → 𝑡 = 𝑔 ) ) |
| 73 |
72 25
|
syl6 |
⊢ ( ( 𝑧 = ( { 𝑡 } × 𝑡 ) ∧ 𝑤 = ( { 𝑔 } × 𝑔 ) ) → ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝑤 ) → ( { 𝑡 } × 𝑡 ) = ( { 𝑔 } × 𝑔 ) ) ) |
| 74 |
|
eqeq12 |
⊢ ( ( 𝑧 = ( { 𝑡 } × 𝑡 ) ∧ 𝑤 = ( { 𝑔 } × 𝑔 ) ) → ( 𝑧 = 𝑤 ↔ ( { 𝑡 } × 𝑡 ) = ( { 𝑔 } × 𝑔 ) ) ) |
| 75 |
73 74
|
sylibrd |
⊢ ( ( 𝑧 = ( { 𝑡 } × 𝑡 ) ∧ 𝑤 = ( { 𝑔 } × 𝑔 ) ) → ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝑤 ) → 𝑧 = 𝑤 ) ) |
| 76 |
75
|
ex |
⊢ ( 𝑧 = ( { 𝑡 } × 𝑡 ) → ( 𝑤 = ( { 𝑔 } × 𝑔 ) → ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝑤 ) → 𝑧 = 𝑤 ) ) ) |
| 77 |
76
|
rexlimivw |
⊢ ( ∃ 𝑡 ∈ ℎ 𝑧 = ( { 𝑡 } × 𝑡 ) → ( 𝑤 = ( { 𝑔 } × 𝑔 ) → ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝑤 ) → 𝑧 = 𝑤 ) ) ) |
| 78 |
77
|
rexlimdvw |
⊢ ( ∃ 𝑡 ∈ ℎ 𝑧 = ( { 𝑡 } × 𝑡 ) → ( ∃ 𝑔 ∈ ℎ 𝑤 = ( { 𝑔 } × 𝑔 ) → ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝑤 ) → 𝑧 = 𝑤 ) ) ) |
| 79 |
78
|
imp |
⊢ ( ( ∃ 𝑡 ∈ ℎ 𝑧 = ( { 𝑡 } × 𝑡 ) ∧ ∃ 𝑔 ∈ ℎ 𝑤 = ( { 𝑔 } × 𝑔 ) ) → ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝑤 ) → 𝑧 = 𝑤 ) ) |
| 80 |
14 28 79
|
syl2an |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝑤 ) → 𝑧 = 𝑤 ) ) |
| 81 |
12 80
|
biimtrrid |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( ¬ ( 𝑥 ∈ 𝑧 → ¬ 𝑥 ∈ 𝑤 ) → 𝑧 = 𝑤 ) ) |
| 82 |
81
|
necon1ad |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( 𝑧 ≠ 𝑤 → ( 𝑥 ∈ 𝑧 → ¬ 𝑥 ∈ 𝑤 ) ) ) |
| 83 |
82
|
alrimdv |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( 𝑧 ≠ 𝑤 → ∀ 𝑥 ( 𝑥 ∈ 𝑧 → ¬ 𝑥 ∈ 𝑤 ) ) ) |
| 84 |
|
disj1 |
⊢ ( ( 𝑧 ∩ 𝑤 ) = ∅ ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑧 → ¬ 𝑥 ∈ 𝑤 ) ) |
| 85 |
83 84
|
imbitrrdi |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) |
| 86 |
85
|
rgen2 |
⊢ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) |
| 87 |
|
vex |
⊢ ℎ ∈ V |
| 88 |
|
vuniex |
⊢ ∪ ℎ ∈ V |
| 89 |
87 88
|
xpex |
⊢ ( ℎ × ∪ ℎ ) ∈ V |
| 90 |
89
|
pwex |
⊢ 𝒫 ( ℎ × ∪ ℎ ) ∈ V |
| 91 |
|
snssi |
⊢ ( 𝑡 ∈ ℎ → { 𝑡 } ⊆ ℎ ) |
| 92 |
|
elssuni |
⊢ ( 𝑡 ∈ ℎ → 𝑡 ⊆ ∪ ℎ ) |
| 93 |
|
xpss12 |
⊢ ( ( { 𝑡 } ⊆ ℎ ∧ 𝑡 ⊆ ∪ ℎ ) → ( { 𝑡 } × 𝑡 ) ⊆ ( ℎ × ∪ ℎ ) ) |
| 94 |
91 92 93
|
syl2anc |
⊢ ( 𝑡 ∈ ℎ → ( { 𝑡 } × 𝑡 ) ⊆ ( ℎ × ∪ ℎ ) ) |
| 95 |
|
vsnex |
⊢ { 𝑡 } ∈ V |
| 96 |
95 67
|
xpex |
⊢ ( { 𝑡 } × 𝑡 ) ∈ V |
| 97 |
96
|
elpw |
⊢ ( ( { 𝑡 } × 𝑡 ) ∈ 𝒫 ( ℎ × ∪ ℎ ) ↔ ( { 𝑡 } × 𝑡 ) ⊆ ( ℎ × ∪ ℎ ) ) |
| 98 |
94 97
|
sylibr |
⊢ ( 𝑡 ∈ ℎ → ( { 𝑡 } × 𝑡 ) ∈ 𝒫 ( ℎ × ∪ ℎ ) ) |
| 99 |
|
eleq1 |
⊢ ( 𝑢 = ( { 𝑡 } × 𝑡 ) → ( 𝑢 ∈ 𝒫 ( ℎ × ∪ ℎ ) ↔ ( { 𝑡 } × 𝑡 ) ∈ 𝒫 ( ℎ × ∪ ℎ ) ) ) |
| 100 |
98 99
|
syl5ibrcom |
⊢ ( 𝑡 ∈ ℎ → ( 𝑢 = ( { 𝑡 } × 𝑡 ) → 𝑢 ∈ 𝒫 ( ℎ × ∪ ℎ ) ) ) |
| 101 |
100
|
rexlimiv |
⊢ ( ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) → 𝑢 ∈ 𝒫 ( ℎ × ∪ ℎ ) ) |
| 102 |
101
|
adantl |
⊢ ( ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) → 𝑢 ∈ 𝒫 ( ℎ × ∪ ℎ ) ) |
| 103 |
102
|
abssi |
⊢ { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) } ⊆ 𝒫 ( ℎ × ∪ ℎ ) |
| 104 |
90 103
|
ssexi |
⊢ { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) } ∈ V |
| 105 |
1 104
|
eqeltri |
⊢ 𝐴 ∈ V |
| 106 |
|
raleq |
⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ↔ ∀ 𝑧 ∈ 𝐴 𝑧 ≠ ∅ ) ) |
| 107 |
|
raleq |
⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ↔ ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) |
| 108 |
107
|
raleqbi1dv |
⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ↔ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) |
| 109 |
106 108
|
anbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ↔ ( ∀ 𝑧 ∈ 𝐴 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) ) |
| 110 |
|
raleq |
⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∀ 𝑧 ∈ 𝐴 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |
| 111 |
110
|
exbidv |
⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∃ 𝑦 ∀ 𝑧 ∈ 𝐴 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |
| 112 |
109 111
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ( ( ∀ 𝑧 ∈ 𝐴 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝐴 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 113 |
105 112
|
spcv |
⊢ ( ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) → ( ( ∀ 𝑧 ∈ 𝐴 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝐴 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |
| 114 |
2 113
|
sylbi |
⊢ ( 𝜑 → ( ( ∀ 𝑧 ∈ 𝐴 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝐴 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |
| 115 |
11 86 114
|
mp2ani |
⊢ ( 𝜑 → ∃ 𝑦 ∀ 𝑧 ∈ 𝐴 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) |