| Step |
Hyp |
Ref |
Expression |
| 1 |
|
po0 |
⊢ 𝑅 Po ∅ |
| 2 |
|
res0 |
⊢ ( I ↾ ∅ ) = ∅ |
| 3 |
2
|
ineq2i |
⊢ ( 𝑅 ∩ ( I ↾ ∅ ) ) = ( 𝑅 ∩ ∅ ) |
| 4 |
|
in0 |
⊢ ( 𝑅 ∩ ∅ ) = ∅ |
| 5 |
3 4
|
eqtri |
⊢ ( 𝑅 ∩ ( I ↾ ∅ ) ) = ∅ |
| 6 |
|
xp0 |
⊢ ( 𝐴 × ∅ ) = ∅ |
| 7 |
6
|
ineq2i |
⊢ ( 𝑅 ∩ ( 𝐴 × ∅ ) ) = ( 𝑅 ∩ ∅ ) |
| 8 |
7 4
|
eqtri |
⊢ ( 𝑅 ∩ ( 𝐴 × ∅ ) ) = ∅ |
| 9 |
8
|
coeq2i |
⊢ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × ∅ ) ) ) = ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ∅ ) |
| 10 |
|
co02 |
⊢ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ∅ ) = ∅ |
| 11 |
9 10
|
eqtri |
⊢ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × ∅ ) ) ) = ∅ |
| 12 |
|
0ss |
⊢ ∅ ⊆ 𝑅 |
| 13 |
11 12
|
eqsstri |
⊢ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × ∅ ) ) ) ⊆ 𝑅 |
| 14 |
5 13
|
pm3.2i |
⊢ ( ( 𝑅 ∩ ( I ↾ ∅ ) ) = ∅ ∧ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × ∅ ) ) ) ⊆ 𝑅 ) |
| 15 |
1 14
|
2th |
⊢ ( 𝑅 Po ∅ ↔ ( ( 𝑅 ∩ ( I ↾ ∅ ) ) = ∅ ∧ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × ∅ ) ) ) ⊆ 𝑅 ) ) |
| 16 |
|
poeq2 |
⊢ ( 𝐴 = ∅ → ( 𝑅 Po 𝐴 ↔ 𝑅 Po ∅ ) ) |
| 17 |
|
reseq2 |
⊢ ( 𝐴 = ∅ → ( I ↾ 𝐴 ) = ( I ↾ ∅ ) ) |
| 18 |
17
|
ineq2d |
⊢ ( 𝐴 = ∅ → ( 𝑅 ∩ ( I ↾ 𝐴 ) ) = ( 𝑅 ∩ ( I ↾ ∅ ) ) ) |
| 19 |
18
|
eqeq1d |
⊢ ( 𝐴 = ∅ → ( ( 𝑅 ∩ ( I ↾ 𝐴 ) ) = ∅ ↔ ( 𝑅 ∩ ( I ↾ ∅ ) ) = ∅ ) ) |
| 20 |
|
xpeq2 |
⊢ ( 𝐴 = ∅ → ( 𝐴 × 𝐴 ) = ( 𝐴 × ∅ ) ) |
| 21 |
20
|
ineq2d |
⊢ ( 𝐴 = ∅ → ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) = ( 𝑅 ∩ ( 𝐴 × ∅ ) ) ) |
| 22 |
21
|
coeq2d |
⊢ ( 𝐴 = ∅ → ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) = ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × ∅ ) ) ) ) |
| 23 |
22
|
sseq1d |
⊢ ( 𝐴 = ∅ → ( ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑅 ↔ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × ∅ ) ) ) ⊆ 𝑅 ) ) |
| 24 |
19 23
|
anbi12d |
⊢ ( 𝐴 = ∅ → ( ( ( 𝑅 ∩ ( I ↾ 𝐴 ) ) = ∅ ∧ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑅 ) ↔ ( ( 𝑅 ∩ ( I ↾ ∅ ) ) = ∅ ∧ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × ∅ ) ) ) ⊆ 𝑅 ) ) ) |
| 25 |
16 24
|
bibi12d |
⊢ ( 𝐴 = ∅ → ( ( 𝑅 Po 𝐴 ↔ ( ( 𝑅 ∩ ( I ↾ 𝐴 ) ) = ∅ ∧ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑅 ) ) ↔ ( 𝑅 Po ∅ ↔ ( ( 𝑅 ∩ ( I ↾ ∅ ) ) = ∅ ∧ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × ∅ ) ) ) ⊆ 𝑅 ) ) ) ) |
| 26 |
15 25
|
mpbiri |
⊢ ( 𝐴 = ∅ → ( 𝑅 Po 𝐴 ↔ ( ( 𝑅 ∩ ( I ↾ 𝐴 ) ) = ∅ ∧ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑅 ) ) ) |
| 27 |
|
r19.28zv |
⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ↔ ( ¬ 𝑥 𝑅 𝑥 ∧ ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) ) |
| 28 |
27
|
ralbidv |
⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ↔ ∀ 𝑦 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) ) |
| 29 |
|
r19.28zv |
⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑦 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ↔ ( ¬ 𝑥 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) ) |
| 30 |
28 29
|
bitrd |
⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ↔ ( ¬ 𝑥 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) ) |
| 31 |
30
|
ralbidv |
⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) ) |
| 32 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 𝑅 𝑥 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) |
| 33 |
31 32
|
bitrdi |
⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 𝑅 𝑥 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) ) |
| 34 |
|
df-po |
⊢ ( 𝑅 Po 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) |
| 35 |
|
disj |
⊢ ( ( 𝑅 ∩ ( I ↾ 𝐴 ) ) = ∅ ↔ ∀ 𝑤 ∈ 𝑅 ¬ 𝑤 ∈ ( I ↾ 𝐴 ) ) |
| 36 |
|
df-ral |
⊢ ( ∀ 𝑤 ∈ 𝑅 ¬ 𝑤 ∈ ( I ↾ 𝐴 ) ↔ ∀ 𝑤 ( 𝑤 ∈ 𝑅 → ¬ 𝑤 ∈ ( I ↾ 𝐴 ) ) ) |
| 37 |
|
opex |
⊢ 〈 𝑥 , 𝑥 〉 ∈ V |
| 38 |
|
eleq1 |
⊢ ( 𝑤 = 〈 𝑥 , 𝑥 〉 → ( 𝑤 ∈ 𝑅 ↔ 〈 𝑥 , 𝑥 〉 ∈ 𝑅 ) ) |
| 39 |
|
df-br |
⊢ ( 𝑥 𝑅 𝑥 ↔ 〈 𝑥 , 𝑥 〉 ∈ 𝑅 ) |
| 40 |
38 39
|
bitr4di |
⊢ ( 𝑤 = 〈 𝑥 , 𝑥 〉 → ( 𝑤 ∈ 𝑅 ↔ 𝑥 𝑅 𝑥 ) ) |
| 41 |
|
eleq1 |
⊢ ( 𝑤 = 〈 𝑥 , 𝑥 〉 → ( 𝑤 ∈ ( I ↾ 𝐴 ) ↔ 〈 𝑥 , 𝑥 〉 ∈ ( I ↾ 𝐴 ) ) ) |
| 42 |
|
opelidres |
⊢ ( 𝑥 ∈ V → ( 〈 𝑥 , 𝑥 〉 ∈ ( I ↾ 𝐴 ) ↔ 𝑥 ∈ 𝐴 ) ) |
| 43 |
42
|
elv |
⊢ ( 〈 𝑥 , 𝑥 〉 ∈ ( I ↾ 𝐴 ) ↔ 𝑥 ∈ 𝐴 ) |
| 44 |
41 43
|
bitrdi |
⊢ ( 𝑤 = 〈 𝑥 , 𝑥 〉 → ( 𝑤 ∈ ( I ↾ 𝐴 ) ↔ 𝑥 ∈ 𝐴 ) ) |
| 45 |
44
|
notbid |
⊢ ( 𝑤 = 〈 𝑥 , 𝑥 〉 → ( ¬ 𝑤 ∈ ( I ↾ 𝐴 ) ↔ ¬ 𝑥 ∈ 𝐴 ) ) |
| 46 |
40 45
|
imbi12d |
⊢ ( 𝑤 = 〈 𝑥 , 𝑥 〉 → ( ( 𝑤 ∈ 𝑅 → ¬ 𝑤 ∈ ( I ↾ 𝐴 ) ) ↔ ( 𝑥 𝑅 𝑥 → ¬ 𝑥 ∈ 𝐴 ) ) ) |
| 47 |
37 46
|
spcv |
⊢ ( ∀ 𝑤 ( 𝑤 ∈ 𝑅 → ¬ 𝑤 ∈ ( I ↾ 𝐴 ) ) → ( 𝑥 𝑅 𝑥 → ¬ 𝑥 ∈ 𝐴 ) ) |
| 48 |
47
|
con2d |
⊢ ( ∀ 𝑤 ( 𝑤 ∈ 𝑅 → ¬ 𝑤 ∈ ( I ↾ 𝐴 ) ) → ( 𝑥 ∈ 𝐴 → ¬ 𝑥 𝑅 𝑥 ) ) |
| 49 |
48
|
alrimiv |
⊢ ( ∀ 𝑤 ( 𝑤 ∈ 𝑅 → ¬ 𝑤 ∈ ( I ↾ 𝐴 ) ) → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 𝑅 𝑥 ) ) |
| 50 |
|
relres |
⊢ Rel ( I ↾ 𝐴 ) |
| 51 |
|
elrel |
⊢ ( ( Rel ( I ↾ 𝐴 ) ∧ 𝑤 ∈ ( I ↾ 𝐴 ) ) → ∃ 𝑦 ∃ 𝑧 𝑤 = 〈 𝑦 , 𝑧 〉 ) |
| 52 |
50 51
|
mpan |
⊢ ( 𝑤 ∈ ( I ↾ 𝐴 ) → ∃ 𝑦 ∃ 𝑧 𝑤 = 〈 𝑦 , 𝑧 〉 ) |
| 53 |
52
|
ancri |
⊢ ( 𝑤 ∈ ( I ↾ 𝐴 ) → ( ∃ 𝑦 ∃ 𝑧 𝑤 = 〈 𝑦 , 𝑧 〉 ∧ 𝑤 ∈ ( I ↾ 𝐴 ) ) ) |
| 54 |
|
eleq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
| 55 |
|
breq12 |
⊢ ( ( 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) → ( 𝑥 𝑅 𝑥 ↔ 𝑦 𝑅 𝑦 ) ) |
| 56 |
55
|
anidms |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑥 ↔ 𝑦 𝑅 𝑦 ) ) |
| 57 |
56
|
notbid |
⊢ ( 𝑥 = 𝑦 → ( ¬ 𝑥 𝑅 𝑥 ↔ ¬ 𝑦 𝑅 𝑦 ) ) |
| 58 |
54 57
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 𝑅 𝑥 ) ↔ ( 𝑦 ∈ 𝐴 → ¬ 𝑦 𝑅 𝑦 ) ) ) |
| 59 |
58
|
spvv |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 𝑅 𝑥 ) → ( 𝑦 ∈ 𝐴 → ¬ 𝑦 𝑅 𝑦 ) ) |
| 60 |
|
breq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 𝑅 𝑦 ↔ 𝑦 𝑅 𝑧 ) ) |
| 61 |
60
|
notbid |
⊢ ( 𝑦 = 𝑧 → ( ¬ 𝑦 𝑅 𝑦 ↔ ¬ 𝑦 𝑅 𝑧 ) ) |
| 62 |
61
|
imbi2d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑦 ∈ 𝐴 → ¬ 𝑦 𝑅 𝑦 ) ↔ ( 𝑦 ∈ 𝐴 → ¬ 𝑦 𝑅 𝑧 ) ) ) |
| 63 |
62
|
biimpcd |
⊢ ( ( 𝑦 ∈ 𝐴 → ¬ 𝑦 𝑅 𝑦 ) → ( 𝑦 = 𝑧 → ( 𝑦 ∈ 𝐴 → ¬ 𝑦 𝑅 𝑧 ) ) ) |
| 64 |
63
|
impcomd |
⊢ ( ( 𝑦 ∈ 𝐴 → ¬ 𝑦 𝑅 𝑦 ) → ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 = 𝑧 ) → ¬ 𝑦 𝑅 𝑧 ) ) |
| 65 |
59 64
|
syl |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 𝑅 𝑥 ) → ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 = 𝑧 ) → ¬ 𝑦 𝑅 𝑧 ) ) |
| 66 |
|
eleq1 |
⊢ ( 𝑤 = 〈 𝑦 , 𝑧 〉 → ( 𝑤 ∈ ( I ↾ 𝐴 ) ↔ 〈 𝑦 , 𝑧 〉 ∈ ( I ↾ 𝐴 ) ) ) |
| 67 |
|
vex |
⊢ 𝑧 ∈ V |
| 68 |
67
|
brresi |
⊢ ( 𝑦 ( I ↾ 𝐴 ) 𝑧 ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 I 𝑧 ) ) |
| 69 |
|
df-br |
⊢ ( 𝑦 ( I ↾ 𝐴 ) 𝑧 ↔ 〈 𝑦 , 𝑧 〉 ∈ ( I ↾ 𝐴 ) ) |
| 70 |
67
|
ideq |
⊢ ( 𝑦 I 𝑧 ↔ 𝑦 = 𝑧 ) |
| 71 |
70
|
anbi2i |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 I 𝑧 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 = 𝑧 ) ) |
| 72 |
68 69 71
|
3bitr3ri |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 = 𝑧 ) ↔ 〈 𝑦 , 𝑧 〉 ∈ ( I ↾ 𝐴 ) ) |
| 73 |
66 72
|
bitr4di |
⊢ ( 𝑤 = 〈 𝑦 , 𝑧 〉 → ( 𝑤 ∈ ( I ↾ 𝐴 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 = 𝑧 ) ) ) |
| 74 |
|
eleq1 |
⊢ ( 𝑤 = 〈 𝑦 , 𝑧 〉 → ( 𝑤 ∈ 𝑅 ↔ 〈 𝑦 , 𝑧 〉 ∈ 𝑅 ) ) |
| 75 |
|
df-br |
⊢ ( 𝑦 𝑅 𝑧 ↔ 〈 𝑦 , 𝑧 〉 ∈ 𝑅 ) |
| 76 |
74 75
|
bitr4di |
⊢ ( 𝑤 = 〈 𝑦 , 𝑧 〉 → ( 𝑤 ∈ 𝑅 ↔ 𝑦 𝑅 𝑧 ) ) |
| 77 |
76
|
notbid |
⊢ ( 𝑤 = 〈 𝑦 , 𝑧 〉 → ( ¬ 𝑤 ∈ 𝑅 ↔ ¬ 𝑦 𝑅 𝑧 ) ) |
| 78 |
73 77
|
imbi12d |
⊢ ( 𝑤 = 〈 𝑦 , 𝑧 〉 → ( ( 𝑤 ∈ ( I ↾ 𝐴 ) → ¬ 𝑤 ∈ 𝑅 ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 = 𝑧 ) → ¬ 𝑦 𝑅 𝑧 ) ) ) |
| 79 |
65 78
|
syl5ibrcom |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 𝑅 𝑥 ) → ( 𝑤 = 〈 𝑦 , 𝑧 〉 → ( 𝑤 ∈ ( I ↾ 𝐴 ) → ¬ 𝑤 ∈ 𝑅 ) ) ) |
| 80 |
79
|
exlimdvv |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 𝑅 𝑥 ) → ( ∃ 𝑦 ∃ 𝑧 𝑤 = 〈 𝑦 , 𝑧 〉 → ( 𝑤 ∈ ( I ↾ 𝐴 ) → ¬ 𝑤 ∈ 𝑅 ) ) ) |
| 81 |
80
|
impd |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 𝑅 𝑥 ) → ( ( ∃ 𝑦 ∃ 𝑧 𝑤 = 〈 𝑦 , 𝑧 〉 ∧ 𝑤 ∈ ( I ↾ 𝐴 ) ) → ¬ 𝑤 ∈ 𝑅 ) ) |
| 82 |
53 81
|
syl5 |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 𝑅 𝑥 ) → ( 𝑤 ∈ ( I ↾ 𝐴 ) → ¬ 𝑤 ∈ 𝑅 ) ) |
| 83 |
82
|
con2d |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 𝑅 𝑥 ) → ( 𝑤 ∈ 𝑅 → ¬ 𝑤 ∈ ( I ↾ 𝐴 ) ) ) |
| 84 |
83
|
alrimiv |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 𝑅 𝑥 ) → ∀ 𝑤 ( 𝑤 ∈ 𝑅 → ¬ 𝑤 ∈ ( I ↾ 𝐴 ) ) ) |
| 85 |
49 84
|
impbii |
⊢ ( ∀ 𝑤 ( 𝑤 ∈ 𝑅 → ¬ 𝑤 ∈ ( I ↾ 𝐴 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 𝑅 𝑥 ) ) |
| 86 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 𝑅 𝑥 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 𝑅 𝑥 ) ) |
| 87 |
85 86
|
bitr4i |
⊢ ( ∀ 𝑤 ( 𝑤 ∈ 𝑅 → ¬ 𝑤 ∈ ( I ↾ 𝐴 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 𝑅 𝑥 ) |
| 88 |
35 36 87
|
3bitri |
⊢ ( ( 𝑅 ∩ ( I ↾ 𝐴 ) ) = ∅ ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 𝑅 𝑥 ) |
| 89 |
|
ralcom |
⊢ ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ↔ ∀ 𝑧 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) |
| 90 |
|
r19.23v |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ↔ ( ∃ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) |
| 91 |
90
|
ralbii |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ↔ ∀ 𝑧 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) |
| 92 |
89 91
|
bitri |
⊢ ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ↔ ∀ 𝑧 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) |
| 93 |
92
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) |
| 94 |
|
brin |
⊢ ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑦 ↔ ( 𝑥 𝑅 𝑦 ∧ 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ) ) |
| 95 |
|
brin |
⊢ ( 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑧 ↔ ( 𝑦 𝑅 𝑧 ∧ 𝑦 ( 𝐴 × 𝐴 ) 𝑧 ) ) |
| 96 |
94 95
|
anbi12i |
⊢ ( ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑦 ∧ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑧 ) ↔ ( ( 𝑥 𝑅 𝑦 ∧ 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ) ∧ ( 𝑦 𝑅 𝑧 ∧ 𝑦 ( 𝐴 × 𝐴 ) 𝑧 ) ) ) |
| 97 |
|
an4 |
⊢ ( ( ( 𝑥 𝑅 𝑦 ∧ 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ) ∧ ( 𝑦 𝑅 𝑧 ∧ 𝑦 ( 𝐴 × 𝐴 ) 𝑧 ) ) ↔ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ∧ ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ∧ 𝑦 ( 𝐴 × 𝐴 ) 𝑧 ) ) ) |
| 98 |
|
ancom |
⊢ ( ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ∧ ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ∧ 𝑦 ( 𝐴 × 𝐴 ) 𝑧 ) ) ↔ ( ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ∧ 𝑦 ( 𝐴 × 𝐴 ) 𝑧 ) ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ) |
| 99 |
|
ancom |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) |
| 100 |
99
|
anbi1i |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ) |
| 101 |
|
brxp |
⊢ ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) |
| 102 |
|
brxp |
⊢ ( 𝑦 ( 𝐴 × 𝐴 ) 𝑧 ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) |
| 103 |
101 102
|
anbi12i |
⊢ ( ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ∧ 𝑦 ( 𝐴 × 𝐴 ) 𝑧 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ) |
| 104 |
|
anandi |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ) |
| 105 |
100 103 104
|
3bitr4i |
⊢ ( ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ∧ 𝑦 ( 𝐴 × 𝐴 ) 𝑧 ) ↔ ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ) |
| 106 |
105
|
anbi1i |
⊢ ( ( ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ∧ 𝑦 ( 𝐴 × 𝐴 ) 𝑧 ) ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ) |
| 107 |
97 98 106
|
3bitri |
⊢ ( ( ( 𝑥 𝑅 𝑦 ∧ 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ) ∧ ( 𝑦 𝑅 𝑧 ∧ 𝑦 ( 𝐴 × 𝐴 ) 𝑧 ) ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ) |
| 108 |
|
anass |
⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ↔ ( 𝑦 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ) ) |
| 109 |
96 107 108
|
3bitri |
⊢ ( ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑦 ∧ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑧 ) ↔ ( 𝑦 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ) ) |
| 110 |
109
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑦 ∧ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑧 ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ) ) |
| 111 |
|
vex |
⊢ 𝑥 ∈ V |
| 112 |
111 67
|
brco |
⊢ ( 𝑥 ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) 𝑧 ↔ ∃ 𝑦 ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑦 ∧ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑧 ) ) |
| 113 |
|
df-br |
⊢ ( 𝑥 ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) 𝑧 ↔ 〈 𝑥 , 𝑧 〉 ∈ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 114 |
112 113
|
bitr3i |
⊢ ( ∃ 𝑦 ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑦 ∧ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑧 ) ↔ 〈 𝑥 , 𝑧 〉 ∈ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 115 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝐴 ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ) ) |
| 116 |
|
r19.42v |
⊢ ( ∃ 𝑦 ∈ 𝐴 ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ) |
| 117 |
115 116
|
bitr3i |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ) |
| 118 |
110 114 117
|
3bitr3ri |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ↔ 〈 𝑥 , 𝑧 〉 ∈ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 119 |
|
df-br |
⊢ ( 𝑥 𝑅 𝑧 ↔ 〈 𝑥 , 𝑧 〉 ∈ 𝑅 ) |
| 120 |
118 119
|
imbi12i |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) → 𝑥 𝑅 𝑧 ) ↔ ( 〈 𝑥 , 𝑧 〉 ∈ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) → 〈 𝑥 , 𝑧 〉 ∈ 𝑅 ) ) |
| 121 |
120
|
2albii |
⊢ ( ∀ 𝑥 ∀ 𝑧 ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) → 𝑥 𝑅 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑧 ( 〈 𝑥 , 𝑧 〉 ∈ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) → 〈 𝑥 , 𝑧 〉 ∈ 𝑅 ) ) |
| 122 |
|
r2al |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑧 ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) |
| 123 |
|
impexp |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) → 𝑥 𝑅 𝑧 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) |
| 124 |
123
|
2albii |
⊢ ( ∀ 𝑥 ∀ 𝑧 ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) → 𝑥 𝑅 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑧 ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) |
| 125 |
122 124
|
bitr4i |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑧 ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) → 𝑥 𝑅 𝑧 ) ) |
| 126 |
|
relco |
⊢ Rel ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) |
| 127 |
|
ssrel |
⊢ ( Rel ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) → ( ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑅 ↔ ∀ 𝑥 ∀ 𝑧 ( 〈 𝑥 , 𝑧 〉 ∈ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) → 〈 𝑥 , 𝑧 〉 ∈ 𝑅 ) ) ) |
| 128 |
126 127
|
ax-mp |
⊢ ( ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑅 ↔ ∀ 𝑥 ∀ 𝑧 ( 〈 𝑥 , 𝑧 〉 ∈ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) → 〈 𝑥 , 𝑧 〉 ∈ 𝑅 ) ) |
| 129 |
121 125 128
|
3bitr4i |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ↔ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑅 ) |
| 130 |
93 129
|
bitr2i |
⊢ ( ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑅 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) |
| 131 |
88 130
|
anbi12i |
⊢ ( ( ( 𝑅 ∩ ( I ↾ 𝐴 ) ) = ∅ ∧ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑅 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 𝑅 𝑥 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) |
| 132 |
33 34 131
|
3bitr4g |
⊢ ( 𝐴 ≠ ∅ → ( 𝑅 Po 𝐴 ↔ ( ( 𝑅 ∩ ( I ↾ 𝐴 ) ) = ∅ ∧ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑅 ) ) ) |
| 133 |
26 132
|
pm2.61ine |
⊢ ( 𝑅 Po 𝐴 ↔ ( ( 𝑅 ∩ ( I ↾ 𝐴 ) ) = ∅ ∧ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑅 ) ) |