Metamath Proof Explorer


Theorem gsumzf1o

Description: Re-index a finite group sum using a bijection. (Contributed by Mario Carneiro, 24-Apr-2016) (Revised by AV, 2-Jun-2019)

Ref Expression
Hypotheses gsumzcl.b 𝐵 = ( Base ‘ 𝐺 )
gsumzcl.0 0 = ( 0g𝐺 )
gsumzcl.z 𝑍 = ( Cntz ‘ 𝐺 )
gsumzcl.g ( 𝜑𝐺 ∈ Mnd )
gsumzcl.a ( 𝜑𝐴𝑉 )
gsumzcl.f ( 𝜑𝐹 : 𝐴𝐵 )
gsumzcl.c ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) )
gsumzcl.w ( 𝜑𝐹 finSupp 0 )
gsumzf1o.h ( 𝜑𝐻 : 𝐶1-1-onto𝐴 )
Assertion gsumzf1o ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝐹𝐻 ) ) )

Proof

Step Hyp Ref Expression
1 gsumzcl.b 𝐵 = ( Base ‘ 𝐺 )
2 gsumzcl.0 0 = ( 0g𝐺 )
3 gsumzcl.z 𝑍 = ( Cntz ‘ 𝐺 )
4 gsumzcl.g ( 𝜑𝐺 ∈ Mnd )
5 gsumzcl.a ( 𝜑𝐴𝑉 )
6 gsumzcl.f ( 𝜑𝐹 : 𝐴𝐵 )
7 gsumzcl.c ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) )
8 gsumzcl.w ( 𝜑𝐹 finSupp 0 )
9 gsumzf1o.h ( 𝜑𝐻 : 𝐶1-1-onto𝐴 )
10 2 gsumz ( ( 𝐺 ∈ Mnd ∧ 𝐴𝑉 ) → ( 𝐺 Σg ( 𝑘𝐴0 ) ) = 0 )
11 4 5 10 syl2anc ( 𝜑 → ( 𝐺 Σg ( 𝑘𝐴0 ) ) = 0 )
12 f1of1 ( 𝐻 : 𝐶1-1-onto𝐴𝐻 : 𝐶1-1𝐴 )
13 9 12 syl ( 𝜑𝐻 : 𝐶1-1𝐴 )
14 f1dmex ( ( 𝐻 : 𝐶1-1𝐴𝐴𝑉 ) → 𝐶 ∈ V )
15 13 5 14 syl2anc ( 𝜑𝐶 ∈ V )
16 2 gsumz ( ( 𝐺 ∈ Mnd ∧ 𝐶 ∈ V ) → ( 𝐺 Σg ( 𝑥𝐶0 ) ) = 0 )
17 4 15 16 syl2anc ( 𝜑 → ( 𝐺 Σg ( 𝑥𝐶0 ) ) = 0 )
18 11 17 eqtr4d ( 𝜑 → ( 𝐺 Σg ( 𝑘𝐴0 ) ) = ( 𝐺 Σg ( 𝑥𝐶0 ) ) )
19 18 adantr ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → ( 𝐺 Σg ( 𝑘𝐴0 ) ) = ( 𝐺 Σg ( 𝑥𝐶0 ) ) )
20 2 fvexi 0 ∈ V
21 20 a1i ( 𝜑0 ∈ V )
22 ssidd ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( 𝐹 supp 0 ) )
23 6 5 21 22 gsumcllem ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → 𝐹 = ( 𝑘𝐴0 ) )
24 23 oveq2d ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝑘𝐴0 ) ) )
25 f1of ( 𝐻 : 𝐶1-1-onto𝐴𝐻 : 𝐶𝐴 )
26 9 25 syl ( 𝜑𝐻 : 𝐶𝐴 )
27 26 adantr ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → 𝐻 : 𝐶𝐴 )
28 27 ffvelrnda ( ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) ∧ 𝑥𝐶 ) → ( 𝐻𝑥 ) ∈ 𝐴 )
29 27 feqmptd ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → 𝐻 = ( 𝑥𝐶 ↦ ( 𝐻𝑥 ) ) )
30 eqidd ( 𝑘 = ( 𝐻𝑥 ) → 0 = 0 )
31 28 29 23 30 fmptco ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → ( 𝐹𝐻 ) = ( 𝑥𝐶0 ) )
32 31 oveq2d ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → ( 𝐺 Σg ( 𝐹𝐻 ) ) = ( 𝐺 Σg ( 𝑥𝐶0 ) ) )
33 19 24 32 3eqtr4d ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝐹𝐻 ) ) )
34 33 ex ( 𝜑 → ( ( 𝐹 supp 0 ) = ∅ → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝐹𝐻 ) ) ) )
35 coass ( ( 𝐻 𝐻 ) ∘ 𝑓 ) = ( 𝐻 ∘ ( 𝐻𝑓 ) )
36 9 adantr ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → 𝐻 : 𝐶1-1-onto𝐴 )
37 f1ococnv2 ( 𝐻 : 𝐶1-1-onto𝐴 → ( 𝐻 𝐻 ) = ( I ↾ 𝐴 ) )
38 36 37 syl ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐻 𝐻 ) = ( I ↾ 𝐴 ) )
39 38 coeq1d ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( ( 𝐻 𝐻 ) ∘ 𝑓 ) = ( ( I ↾ 𝐴 ) ∘ 𝑓 ) )
40 f1of1 ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) → 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1→ ( 𝐹 supp 0 ) )
41 40 ad2antll ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1→ ( 𝐹 supp 0 ) )
42 suppssdm ( 𝐹 supp 0 ) ⊆ dom 𝐹
43 42 6 fssdm ( 𝜑 → ( 𝐹 supp 0 ) ⊆ 𝐴 )
44 43 adantr ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐹 supp 0 ) ⊆ 𝐴 )
45 f1ss ( ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1→ ( 𝐹 supp 0 ) ∧ ( 𝐹 supp 0 ) ⊆ 𝐴 ) → 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1𝐴 )
46 41 44 45 syl2anc ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1𝐴 )
47 f1f ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1𝐴𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ⟶ 𝐴 )
48 fcoi2 ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ⟶ 𝐴 → ( ( I ↾ 𝐴 ) ∘ 𝑓 ) = 𝑓 )
49 46 47 48 3syl ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( ( I ↾ 𝐴 ) ∘ 𝑓 ) = 𝑓 )
50 39 49 eqtrd ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( ( 𝐻 𝐻 ) ∘ 𝑓 ) = 𝑓 )
51 35 50 syl5reqr ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → 𝑓 = ( 𝐻 ∘ ( 𝐻𝑓 ) ) )
52 51 coeq2d ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐹𝑓 ) = ( 𝐹 ∘ ( 𝐻 ∘ ( 𝐻𝑓 ) ) ) )
53 coass ( ( 𝐹𝐻 ) ∘ ( 𝐻𝑓 ) ) = ( 𝐹 ∘ ( 𝐻 ∘ ( 𝐻𝑓 ) ) )
54 52 53 syl6eqr ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐹𝑓 ) = ( ( 𝐹𝐻 ) ∘ ( 𝐻𝑓 ) ) )
55 54 seqeq3d ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → seq 1 ( ( +g𝐺 ) , ( 𝐹𝑓 ) ) = seq 1 ( ( +g𝐺 ) , ( ( 𝐹𝐻 ) ∘ ( 𝐻𝑓 ) ) ) )
56 55 fveq1d ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( seq 1 ( ( +g𝐺 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) = ( seq 1 ( ( +g𝐺 ) , ( ( 𝐹𝐻 ) ∘ ( 𝐻𝑓 ) ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) )
57 eqid ( +g𝐺 ) = ( +g𝐺 )
58 4 adantr ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → 𝐺 ∈ Mnd )
59 5 adantr ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → 𝐴𝑉 )
60 6 adantr ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → 𝐹 : 𝐴𝐵 )
61 7 adantr ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) )
62 simprl ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ )
63 ssid ( 𝐹 supp 0 ) ⊆ ( 𝐹 supp 0 )
64 f1ofo ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) → 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –onto→ ( 𝐹 supp 0 ) )
65 forn ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –onto→ ( 𝐹 supp 0 ) → ran 𝑓 = ( 𝐹 supp 0 ) )
66 64 65 syl ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) → ran 𝑓 = ( 𝐹 supp 0 ) )
67 66 ad2antll ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ran 𝑓 = ( 𝐹 supp 0 ) )
68 63 67 sseqtrrid ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐹 supp 0 ) ⊆ ran 𝑓 )
69 eqid ( ( 𝐹𝑓 ) supp 0 ) = ( ( 𝐹𝑓 ) supp 0 )
70 1 2 57 3 58 59 60 61 62 46 68 69 gsumval3 ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐺 Σg 𝐹 ) = ( seq 1 ( ( +g𝐺 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) )
71 15 adantr ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → 𝐶 ∈ V )
72 fco ( ( 𝐹 : 𝐴𝐵𝐻 : 𝐶𝐴 ) → ( 𝐹𝐻 ) : 𝐶𝐵 )
73 6 26 72 syl2anc ( 𝜑 → ( 𝐹𝐻 ) : 𝐶𝐵 )
74 73 adantr ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐹𝐻 ) : 𝐶𝐵 )
75 rncoss ran ( 𝐹𝐻 ) ⊆ ran 𝐹
76 3 cntzidss ( ( ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ∧ ran ( 𝐹𝐻 ) ⊆ ran 𝐹 ) → ran ( 𝐹𝐻 ) ⊆ ( 𝑍 ‘ ran ( 𝐹𝐻 ) ) )
77 7 75 76 sylancl ( 𝜑 → ran ( 𝐹𝐻 ) ⊆ ( 𝑍 ‘ ran ( 𝐹𝐻 ) ) )
78 77 adantr ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ran ( 𝐹𝐻 ) ⊆ ( 𝑍 ‘ ran ( 𝐹𝐻 ) ) )
79 f1ocnv ( 𝐻 : 𝐶1-1-onto𝐴 𝐻 : 𝐴1-1-onto𝐶 )
80 f1of1 ( 𝐻 : 𝐴1-1-onto𝐶 𝐻 : 𝐴1-1𝐶 )
81 9 79 80 3syl ( 𝜑 𝐻 : 𝐴1-1𝐶 )
82 81 adantr ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → 𝐻 : 𝐴1-1𝐶 )
83 f1co ( ( 𝐻 : 𝐴1-1𝐶𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1𝐴 ) → ( 𝐻𝑓 ) : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1𝐶 )
84 82 46 83 syl2anc ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐻𝑓 ) : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1𝐶 )
85 ssidd ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐹 supp 0 ) ⊆ ( 𝐹 supp 0 ) )
86 fex ( ( 𝐹 : 𝐴𝐵𝐴𝑉 ) → 𝐹 ∈ V )
87 6 5 86 syl2anc ( 𝜑𝐹 ∈ V )
88 suppimacnv ( ( 𝐹 ∈ V ∧ 0 ∈ V ) → ( 𝐹 supp 0 ) = ( 𝐹 “ ( V ∖ { 0 } ) ) )
89 87 20 88 sylancl ( 𝜑 → ( 𝐹 supp 0 ) = ( 𝐹 “ ( V ∖ { 0 } ) ) )
90 89 eqcomd ( 𝜑 → ( 𝐹 “ ( V ∖ { 0 } ) ) = ( 𝐹 supp 0 ) )
91 90 adantr ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐹 “ ( V ∖ { 0 } ) ) = ( 𝐹 supp 0 ) )
92 85 91 67 3sstr4d ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐹 “ ( V ∖ { 0 } ) ) ⊆ ran 𝑓 )
93 imass2 ( ( 𝐹 “ ( V ∖ { 0 } ) ) ⊆ ran 𝑓 → ( 𝐻 “ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ⊆ ( 𝐻 “ ran 𝑓 ) )
94 92 93 syl ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐻 “ ( 𝐹 “ ( V ∖ { 0 } ) ) ) ⊆ ( 𝐻 “ ran 𝑓 ) )
95 cnvco ( 𝐹𝐻 ) = ( 𝐻 𝐹 )
96 95 imaeq1i ( ( 𝐹𝐻 ) “ ( V ∖ { 0 } ) ) = ( ( 𝐻 𝐹 ) “ ( V ∖ { 0 } ) )
97 imaco ( ( 𝐻 𝐹 ) “ ( V ∖ { 0 } ) ) = ( 𝐻 “ ( 𝐹 “ ( V ∖ { 0 } ) ) )
98 96 97 eqtri ( ( 𝐹𝐻 ) “ ( V ∖ { 0 } ) ) = ( 𝐻 “ ( 𝐹 “ ( V ∖ { 0 } ) ) )
99 rnco2 ran ( 𝐻𝑓 ) = ( 𝐻 “ ran 𝑓 )
100 94 98 99 3sstr4g ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( ( 𝐹𝐻 ) “ ( V ∖ { 0 } ) ) ⊆ ran ( 𝐻𝑓 ) )
101 f1oexrnex ( ( 𝐻 : 𝐶1-1-onto𝐴𝐴𝑉 ) → 𝐻 ∈ V )
102 9 5 101 syl2anc ( 𝜑𝐻 ∈ V )
103 coexg ( ( 𝐹 ∈ V ∧ 𝐻 ∈ V ) → ( 𝐹𝐻 ) ∈ V )
104 87 102 103 syl2anc ( 𝜑 → ( 𝐹𝐻 ) ∈ V )
105 suppimacnv ( ( ( 𝐹𝐻 ) ∈ V ∧ 0 ∈ V ) → ( ( 𝐹𝐻 ) supp 0 ) = ( ( 𝐹𝐻 ) “ ( V ∖ { 0 } ) ) )
106 104 20 105 sylancl ( 𝜑 → ( ( 𝐹𝐻 ) supp 0 ) = ( ( 𝐹𝐻 ) “ ( V ∖ { 0 } ) ) )
107 106 sseq1d ( 𝜑 → ( ( ( 𝐹𝐻 ) supp 0 ) ⊆ ran ( 𝐻𝑓 ) ↔ ( ( 𝐹𝐻 ) “ ( V ∖ { 0 } ) ) ⊆ ran ( 𝐻𝑓 ) ) )
108 107 adantr ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( ( ( 𝐹𝐻 ) supp 0 ) ⊆ ran ( 𝐻𝑓 ) ↔ ( ( 𝐹𝐻 ) “ ( V ∖ { 0 } ) ) ⊆ ran ( 𝐻𝑓 ) ) )
109 100 108 mpbird ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( ( 𝐹𝐻 ) supp 0 ) ⊆ ran ( 𝐻𝑓 ) )
110 eqid ( ( ( 𝐹𝐻 ) ∘ ( 𝐻𝑓 ) ) supp 0 ) = ( ( ( 𝐹𝐻 ) ∘ ( 𝐻𝑓 ) ) supp 0 )
111 1 2 57 3 58 71 74 78 62 84 109 110 gsumval3 ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐺 Σg ( 𝐹𝐻 ) ) = ( seq 1 ( ( +g𝐺 ) , ( ( 𝐹𝐻 ) ∘ ( 𝐻𝑓 ) ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) )
112 56 70 111 3eqtr4d ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝐹𝐻 ) ) )
113 112 expr ( ( 𝜑 ∧ ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ) → ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝐹𝐻 ) ) ) )
114 113 exlimdv ( ( 𝜑 ∧ ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ) → ( ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝐹𝐻 ) ) ) )
115 114 expimpd ( 𝜑 → ( ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝐹𝐻 ) ) ) )
116 fsuppimp ( 𝐹 finSupp 0 → ( Fun 𝐹 ∧ ( 𝐹 supp 0 ) ∈ Fin ) )
117 116 simprd ( 𝐹 finSupp 0 → ( 𝐹 supp 0 ) ∈ Fin )
118 fz1f1o ( ( 𝐹 supp 0 ) ∈ Fin → ( ( 𝐹 supp 0 ) = ∅ ∨ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) )
119 8 117 118 3syl ( 𝜑 → ( ( 𝐹 supp 0 ) = ∅ ∨ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) )
120 34 115 119 mpjaod ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝐹𝐻 ) ) )