| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bren |
⊢ ( 𝐴 ≈ 𝐵 ↔ ∃ 𝑔 𝑔 : 𝐴 –1-1-onto→ 𝐵 ) |
| 2 |
|
bren |
⊢ ( 𝐶 ≈ 𝐷 ↔ ∃ ℎ ℎ : 𝐶 –1-1-onto→ 𝐷 ) |
| 3 |
|
exdistrv |
⊢ ( ∃ 𝑔 ∃ ℎ ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ↔ ( ∃ 𝑔 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ∃ ℎ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ) |
| 4 |
|
f1osetex |
⊢ { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐶 } ∈ V |
| 5 |
4
|
a1i |
⊢ ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) → { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐶 } ∈ V ) |
| 6 |
|
f1osetex |
⊢ { 𝑓 ∣ 𝑓 : 𝐵 –1-1-onto→ 𝐷 } ∈ V |
| 7 |
6
|
a1i |
⊢ ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) → { 𝑓 ∣ 𝑓 : 𝐵 –1-1-onto→ 𝐷 } ∈ V ) |
| 8 |
|
f1oco |
⊢ ( ( ℎ : 𝐶 –1-1-onto→ 𝐷 ∧ 𝑥 : 𝐴 –1-1-onto→ 𝐶 ) → ( ℎ ∘ 𝑥 ) : 𝐴 –1-1-onto→ 𝐷 ) |
| 9 |
8
|
adantll |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ 𝑥 : 𝐴 –1-1-onto→ 𝐶 ) → ( ℎ ∘ 𝑥 ) : 𝐴 –1-1-onto→ 𝐷 ) |
| 10 |
|
f1ocnv |
⊢ ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝑔 : 𝐵 –1-1-onto→ 𝐴 ) |
| 11 |
10
|
ad2antrr |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ 𝑥 : 𝐴 –1-1-onto→ 𝐶 ) → ◡ 𝑔 : 𝐵 –1-1-onto→ 𝐴 ) |
| 12 |
|
f1oco |
⊢ ( ( ( ℎ ∘ 𝑥 ) : 𝐴 –1-1-onto→ 𝐷 ∧ ◡ 𝑔 : 𝐵 –1-1-onto→ 𝐴 ) → ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) : 𝐵 –1-1-onto→ 𝐷 ) |
| 13 |
9 11 12
|
syl2anc |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ 𝑥 : 𝐴 –1-1-onto→ 𝐶 ) → ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) : 𝐵 –1-1-onto→ 𝐷 ) |
| 14 |
13
|
ex |
⊢ ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) → ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 → ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) : 𝐵 –1-1-onto→ 𝐷 ) ) |
| 15 |
|
vex |
⊢ 𝑥 ∈ V |
| 16 |
|
f1oeq1 |
⊢ ( 𝑓 = 𝑥 → ( 𝑓 : 𝐴 –1-1-onto→ 𝐶 ↔ 𝑥 : 𝐴 –1-1-onto→ 𝐶 ) ) |
| 17 |
15 16
|
elab |
⊢ ( 𝑥 ∈ { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐶 } ↔ 𝑥 : 𝐴 –1-1-onto→ 𝐶 ) |
| 18 |
|
vex |
⊢ ℎ ∈ V |
| 19 |
18 15
|
coex |
⊢ ( ℎ ∘ 𝑥 ) ∈ V |
| 20 |
|
vex |
⊢ 𝑔 ∈ V |
| 21 |
20
|
cnvex |
⊢ ◡ 𝑔 ∈ V |
| 22 |
19 21
|
coex |
⊢ ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) ∈ V |
| 23 |
|
f1oeq1 |
⊢ ( 𝑓 = ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) → ( 𝑓 : 𝐵 –1-1-onto→ 𝐷 ↔ ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) : 𝐵 –1-1-onto→ 𝐷 ) ) |
| 24 |
22 23
|
elab |
⊢ ( ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) ∈ { 𝑓 ∣ 𝑓 : 𝐵 –1-1-onto→ 𝐷 } ↔ ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) : 𝐵 –1-1-onto→ 𝐷 ) |
| 25 |
14 17 24
|
3imtr4g |
⊢ ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) → ( 𝑥 ∈ { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐶 } → ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) ∈ { 𝑓 ∣ 𝑓 : 𝐵 –1-1-onto→ 𝐷 } ) ) |
| 26 |
|
f1ocnv |
⊢ ( ℎ : 𝐶 –1-1-onto→ 𝐷 → ◡ ℎ : 𝐷 –1-1-onto→ 𝐶 ) |
| 27 |
26
|
ad2antlr |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) → ◡ ℎ : 𝐷 –1-1-onto→ 𝐶 ) |
| 28 |
|
f1oco |
⊢ ( ( 𝑦 : 𝐵 –1-1-onto→ 𝐷 ∧ 𝑔 : 𝐴 –1-1-onto→ 𝐵 ) → ( 𝑦 ∘ 𝑔 ) : 𝐴 –1-1-onto→ 𝐷 ) |
| 29 |
28
|
ancoms |
⊢ ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) → ( 𝑦 ∘ 𝑔 ) : 𝐴 –1-1-onto→ 𝐷 ) |
| 30 |
29
|
adantlr |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) → ( 𝑦 ∘ 𝑔 ) : 𝐴 –1-1-onto→ 𝐷 ) |
| 31 |
|
f1oco |
⊢ ( ( ◡ ℎ : 𝐷 –1-1-onto→ 𝐶 ∧ ( 𝑦 ∘ 𝑔 ) : 𝐴 –1-1-onto→ 𝐷 ) → ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) : 𝐴 –1-1-onto→ 𝐶 ) |
| 32 |
27 30 31
|
syl2anc |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) → ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) : 𝐴 –1-1-onto→ 𝐶 ) |
| 33 |
32
|
ex |
⊢ ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) → ( 𝑦 : 𝐵 –1-1-onto→ 𝐷 → ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) : 𝐴 –1-1-onto→ 𝐶 ) ) |
| 34 |
|
vex |
⊢ 𝑦 ∈ V |
| 35 |
|
f1oeq1 |
⊢ ( 𝑓 = 𝑦 → ( 𝑓 : 𝐵 –1-1-onto→ 𝐷 ↔ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) |
| 36 |
34 35
|
elab |
⊢ ( 𝑦 ∈ { 𝑓 ∣ 𝑓 : 𝐵 –1-1-onto→ 𝐷 } ↔ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) |
| 37 |
18
|
cnvex |
⊢ ◡ ℎ ∈ V |
| 38 |
34 20
|
coex |
⊢ ( 𝑦 ∘ 𝑔 ) ∈ V |
| 39 |
37 38
|
coex |
⊢ ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) ∈ V |
| 40 |
|
f1oeq1 |
⊢ ( 𝑓 = ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) → ( 𝑓 : 𝐴 –1-1-onto→ 𝐶 ↔ ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) : 𝐴 –1-1-onto→ 𝐶 ) ) |
| 41 |
39 40
|
elab |
⊢ ( ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) ∈ { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐶 } ↔ ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) : 𝐴 –1-1-onto→ 𝐶 ) |
| 42 |
33 36 41
|
3imtr4g |
⊢ ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) → ( 𝑦 ∈ { 𝑓 ∣ 𝑓 : 𝐵 –1-1-onto→ 𝐷 } → ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) ∈ { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐶 } ) ) |
| 43 |
17 36
|
anbi12i |
⊢ ( ( 𝑥 ∈ { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐶 } ∧ 𝑦 ∈ { 𝑓 ∣ 𝑓 : 𝐵 –1-1-onto→ 𝐷 } ) ↔ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) |
| 44 |
|
coass |
⊢ ( ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) ∘ 𝑔 ) = ( ( ℎ ∘ 𝑥 ) ∘ ( ◡ 𝑔 ∘ 𝑔 ) ) |
| 45 |
|
f1ococnv1 |
⊢ ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 → ( ◡ 𝑔 ∘ 𝑔 ) = ( I ↾ 𝐴 ) ) |
| 46 |
45
|
ad2antrr |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( ◡ 𝑔 ∘ 𝑔 ) = ( I ↾ 𝐴 ) ) |
| 47 |
46
|
coeq2d |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( ( ℎ ∘ 𝑥 ) ∘ ( ◡ 𝑔 ∘ 𝑔 ) ) = ( ( ℎ ∘ 𝑥 ) ∘ ( I ↾ 𝐴 ) ) ) |
| 48 |
9
|
adantrr |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( ℎ ∘ 𝑥 ) : 𝐴 –1-1-onto→ 𝐷 ) |
| 49 |
|
f1of |
⊢ ( ( ℎ ∘ 𝑥 ) : 𝐴 –1-1-onto→ 𝐷 → ( ℎ ∘ 𝑥 ) : 𝐴 ⟶ 𝐷 ) |
| 50 |
|
fcoi1 |
⊢ ( ( ℎ ∘ 𝑥 ) : 𝐴 ⟶ 𝐷 → ( ( ℎ ∘ 𝑥 ) ∘ ( I ↾ 𝐴 ) ) = ( ℎ ∘ 𝑥 ) ) |
| 51 |
48 49 50
|
3syl |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( ( ℎ ∘ 𝑥 ) ∘ ( I ↾ 𝐴 ) ) = ( ℎ ∘ 𝑥 ) ) |
| 52 |
47 51
|
eqtrd |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( ( ℎ ∘ 𝑥 ) ∘ ( ◡ 𝑔 ∘ 𝑔 ) ) = ( ℎ ∘ 𝑥 ) ) |
| 53 |
44 52
|
eqtr2id |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( ℎ ∘ 𝑥 ) = ( ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) ∘ 𝑔 ) ) |
| 54 |
|
coass |
⊢ ( ( ℎ ∘ ◡ ℎ ) ∘ ( 𝑦 ∘ 𝑔 ) ) = ( ℎ ∘ ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) ) |
| 55 |
|
f1ococnv2 |
⊢ ( ℎ : 𝐶 –1-1-onto→ 𝐷 → ( ℎ ∘ ◡ ℎ ) = ( I ↾ 𝐷 ) ) |
| 56 |
55
|
ad2antlr |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( ℎ ∘ ◡ ℎ ) = ( I ↾ 𝐷 ) ) |
| 57 |
56
|
coeq1d |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( ( ℎ ∘ ◡ ℎ ) ∘ ( 𝑦 ∘ 𝑔 ) ) = ( ( I ↾ 𝐷 ) ∘ ( 𝑦 ∘ 𝑔 ) ) ) |
| 58 |
30
|
adantrl |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( 𝑦 ∘ 𝑔 ) : 𝐴 –1-1-onto→ 𝐷 ) |
| 59 |
|
f1of |
⊢ ( ( 𝑦 ∘ 𝑔 ) : 𝐴 –1-1-onto→ 𝐷 → ( 𝑦 ∘ 𝑔 ) : 𝐴 ⟶ 𝐷 ) |
| 60 |
|
fcoi2 |
⊢ ( ( 𝑦 ∘ 𝑔 ) : 𝐴 ⟶ 𝐷 → ( ( I ↾ 𝐷 ) ∘ ( 𝑦 ∘ 𝑔 ) ) = ( 𝑦 ∘ 𝑔 ) ) |
| 61 |
58 59 60
|
3syl |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( ( I ↾ 𝐷 ) ∘ ( 𝑦 ∘ 𝑔 ) ) = ( 𝑦 ∘ 𝑔 ) ) |
| 62 |
57 61
|
eqtrd |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( ( ℎ ∘ ◡ ℎ ) ∘ ( 𝑦 ∘ 𝑔 ) ) = ( 𝑦 ∘ 𝑔 ) ) |
| 63 |
54 62
|
eqtr3id |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( ℎ ∘ ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) ) = ( 𝑦 ∘ 𝑔 ) ) |
| 64 |
53 63
|
eqeq12d |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( ( ℎ ∘ 𝑥 ) = ( ℎ ∘ ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) ) ↔ ( ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) ∘ 𝑔 ) = ( 𝑦 ∘ 𝑔 ) ) ) |
| 65 |
|
eqcom |
⊢ ( ( ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) ∘ 𝑔 ) = ( 𝑦 ∘ 𝑔 ) ↔ ( 𝑦 ∘ 𝑔 ) = ( ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) ∘ 𝑔 ) ) |
| 66 |
64 65
|
bitrdi |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( ( ℎ ∘ 𝑥 ) = ( ℎ ∘ ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) ) ↔ ( 𝑦 ∘ 𝑔 ) = ( ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) ∘ 𝑔 ) ) ) |
| 67 |
|
f1of1 |
⊢ ( ℎ : 𝐶 –1-1-onto→ 𝐷 → ℎ : 𝐶 –1-1→ 𝐷 ) |
| 68 |
67
|
ad2antlr |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ℎ : 𝐶 –1-1→ 𝐷 ) |
| 69 |
|
f1of |
⊢ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 → 𝑥 : 𝐴 ⟶ 𝐶 ) |
| 70 |
69
|
ad2antrl |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → 𝑥 : 𝐴 ⟶ 𝐶 ) |
| 71 |
32
|
adantrl |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) : 𝐴 –1-1-onto→ 𝐶 ) |
| 72 |
|
f1of |
⊢ ( ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) : 𝐴 –1-1-onto→ 𝐶 → ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) : 𝐴 ⟶ 𝐶 ) |
| 73 |
71 72
|
syl |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) : 𝐴 ⟶ 𝐶 ) |
| 74 |
|
cocan1 |
⊢ ( ( ℎ : 𝐶 –1-1→ 𝐷 ∧ 𝑥 : 𝐴 ⟶ 𝐶 ∧ ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) : 𝐴 ⟶ 𝐶 ) → ( ( ℎ ∘ 𝑥 ) = ( ℎ ∘ ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) ) ↔ 𝑥 = ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) ) ) |
| 75 |
68 70 73 74
|
syl3anc |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( ( ℎ ∘ 𝑥 ) = ( ℎ ∘ ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) ) ↔ 𝑥 = ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) ) ) |
| 76 |
|
f1ofo |
⊢ ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 → 𝑔 : 𝐴 –onto→ 𝐵 ) |
| 77 |
76
|
ad2antrr |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → 𝑔 : 𝐴 –onto→ 𝐵 ) |
| 78 |
|
f1ofn |
⊢ ( 𝑦 : 𝐵 –1-1-onto→ 𝐷 → 𝑦 Fn 𝐵 ) |
| 79 |
78
|
ad2antll |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → 𝑦 Fn 𝐵 ) |
| 80 |
13
|
adantrr |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) : 𝐵 –1-1-onto→ 𝐷 ) |
| 81 |
|
f1ofn |
⊢ ( ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) : 𝐵 –1-1-onto→ 𝐷 → ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) Fn 𝐵 ) |
| 82 |
80 81
|
syl |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) Fn 𝐵 ) |
| 83 |
|
cocan2 |
⊢ ( ( 𝑔 : 𝐴 –onto→ 𝐵 ∧ 𝑦 Fn 𝐵 ∧ ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) Fn 𝐵 ) → ( ( 𝑦 ∘ 𝑔 ) = ( ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) ∘ 𝑔 ) ↔ 𝑦 = ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) ) ) |
| 84 |
77 79 82 83
|
syl3anc |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( ( 𝑦 ∘ 𝑔 ) = ( ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) ∘ 𝑔 ) ↔ 𝑦 = ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) ) ) |
| 85 |
66 75 84
|
3bitr3d |
⊢ ( ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) ) → ( 𝑥 = ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) ↔ 𝑦 = ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) ) ) |
| 86 |
85
|
ex |
⊢ ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) → ( ( 𝑥 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) → ( 𝑥 = ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) ↔ 𝑦 = ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) ) ) ) |
| 87 |
43 86
|
biimtrid |
⊢ ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) → ( ( 𝑥 ∈ { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐶 } ∧ 𝑦 ∈ { 𝑓 ∣ 𝑓 : 𝐵 –1-1-onto→ 𝐷 } ) → ( 𝑥 = ( ◡ ℎ ∘ ( 𝑦 ∘ 𝑔 ) ) ↔ 𝑦 = ( ( ℎ ∘ 𝑥 ) ∘ ◡ 𝑔 ) ) ) ) |
| 88 |
5 7 25 42 87
|
en3d |
⊢ ( ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) → { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐶 } ≈ { 𝑓 ∣ 𝑓 : 𝐵 –1-1-onto→ 𝐷 } ) |
| 89 |
88
|
exlimivv |
⊢ ( ∃ 𝑔 ∃ ℎ ( 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ℎ : 𝐶 –1-1-onto→ 𝐷 ) → { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐶 } ≈ { 𝑓 ∣ 𝑓 : 𝐵 –1-1-onto→ 𝐷 } ) |
| 90 |
3 89
|
sylbir |
⊢ ( ( ∃ 𝑔 𝑔 : 𝐴 –1-1-onto→ 𝐵 ∧ ∃ ℎ ℎ : 𝐶 –1-1-onto→ 𝐷 ) → { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐶 } ≈ { 𝑓 ∣ 𝑓 : 𝐵 –1-1-onto→ 𝐷 } ) |
| 91 |
1 2 90
|
syl2anb |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ) → { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐶 } ≈ { 𝑓 ∣ 𝑓 : 𝐵 –1-1-onto→ 𝐷 } ) |