| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hashf1lem2.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 2 |
|
hashf1lem2.2 |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
| 3 |
|
hashf1lem2.3 |
⊢ ( 𝜑 → ¬ 𝑧 ∈ 𝐴 ) |
| 4 |
|
hashf1lem2.4 |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) |
| 5 |
|
hashf1lem1.5 |
⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
| 6 |
|
f1setex |
⊢ ( 𝐵 ∈ Fin → { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 } ∈ V ) |
| 7 |
2 6
|
syl |
⊢ ( 𝜑 → { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 } ∈ V ) |
| 8 |
|
abanssr |
⊢ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ⊆ { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 } |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ⊆ { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) |
| 10 |
7 9
|
ssexd |
⊢ ( 𝜑 → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∈ V ) |
| 11 |
2
|
difexd |
⊢ ( 𝜑 → ( 𝐵 ∖ ran 𝐹 ) ∈ V ) |
| 12 |
|
vex |
⊢ 𝑔 ∈ V |
| 13 |
|
reseq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ↾ 𝐴 ) = ( 𝑔 ↾ 𝐴 ) ) |
| 14 |
13
|
eqeq1d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ↔ ( 𝑔 ↾ 𝐴 ) = 𝐹 ) ) |
| 15 |
|
f1eq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ↔ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) |
| 16 |
14 15
|
anbi12d |
⊢ ( 𝑓 = 𝑔 → ( ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ↔ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) ) |
| 17 |
12 16
|
elab |
⊢ ( 𝑔 ∈ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ↔ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) |
| 18 |
|
f1f |
⊢ ( 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 → 𝑔 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 ) |
| 19 |
18
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → 𝑔 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 ) |
| 20 |
|
ssun2 |
⊢ { 𝑧 } ⊆ ( 𝐴 ∪ { 𝑧 } ) |
| 21 |
|
vex |
⊢ 𝑧 ∈ V |
| 22 |
21
|
snss |
⊢ ( 𝑧 ∈ ( 𝐴 ∪ { 𝑧 } ) ↔ { 𝑧 } ⊆ ( 𝐴 ∪ { 𝑧 } ) ) |
| 23 |
20 22
|
mpbir |
⊢ 𝑧 ∈ ( 𝐴 ∪ { 𝑧 } ) |
| 24 |
|
ffvelcdm |
⊢ ( ( 𝑔 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ 𝑧 ∈ ( 𝐴 ∪ { 𝑧 } ) ) → ( 𝑔 ‘ 𝑧 ) ∈ 𝐵 ) |
| 25 |
19 23 24
|
sylancl |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → ( 𝑔 ‘ 𝑧 ) ∈ 𝐵 ) |
| 26 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → ¬ 𝑧 ∈ 𝐴 ) |
| 27 |
|
df-ima |
⊢ ( 𝑔 “ 𝐴 ) = ran ( 𝑔 ↾ 𝐴 ) |
| 28 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → ( 𝑔 ↾ 𝐴 ) = 𝐹 ) |
| 29 |
28
|
rneqd |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → ran ( 𝑔 ↾ 𝐴 ) = ran 𝐹 ) |
| 30 |
27 29
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → ( 𝑔 “ 𝐴 ) = ran 𝐹 ) |
| 31 |
30
|
eleq2d |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → ( ( 𝑔 ‘ 𝑧 ) ∈ ( 𝑔 “ 𝐴 ) ↔ ( 𝑔 ‘ 𝑧 ) ∈ ran 𝐹 ) ) |
| 32 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) |
| 33 |
23
|
a1i |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → 𝑧 ∈ ( 𝐴 ∪ { 𝑧 } ) ) |
| 34 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ { 𝑧 } ) |
| 35 |
34
|
a1i |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → 𝐴 ⊆ ( 𝐴 ∪ { 𝑧 } ) ) |
| 36 |
|
f1elima |
⊢ ( ( 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ∧ 𝑧 ∈ ( 𝐴 ∪ { 𝑧 } ) ∧ 𝐴 ⊆ ( 𝐴 ∪ { 𝑧 } ) ) → ( ( 𝑔 ‘ 𝑧 ) ∈ ( 𝑔 “ 𝐴 ) ↔ 𝑧 ∈ 𝐴 ) ) |
| 37 |
32 33 35 36
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → ( ( 𝑔 ‘ 𝑧 ) ∈ ( 𝑔 “ 𝐴 ) ↔ 𝑧 ∈ 𝐴 ) ) |
| 38 |
31 37
|
bitr3d |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → ( ( 𝑔 ‘ 𝑧 ) ∈ ran 𝐹 ↔ 𝑧 ∈ 𝐴 ) ) |
| 39 |
26 38
|
mtbird |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → ¬ ( 𝑔 ‘ 𝑧 ) ∈ ran 𝐹 ) |
| 40 |
25 39
|
eldifd |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → ( 𝑔 ‘ 𝑧 ) ∈ ( 𝐵 ∖ ran 𝐹 ) ) |
| 41 |
40
|
ex |
⊢ ( 𝜑 → ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) → ( 𝑔 ‘ 𝑧 ) ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) |
| 42 |
17 41
|
biimtrid |
⊢ ( 𝜑 → ( 𝑔 ∈ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } → ( 𝑔 ‘ 𝑧 ) ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) |
| 43 |
|
f1f |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 44 |
5 43
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 46 |
|
vex |
⊢ 𝑥 ∈ V |
| 47 |
21 46
|
f1osn |
⊢ { 〈 𝑧 , 𝑥 〉 } : { 𝑧 } –1-1-onto→ { 𝑥 } |
| 48 |
|
f1of |
⊢ ( { 〈 𝑧 , 𝑥 〉 } : { 𝑧 } –1-1-onto→ { 𝑥 } → { 〈 𝑧 , 𝑥 〉 } : { 𝑧 } ⟶ { 𝑥 } ) |
| 49 |
47 48
|
ax-mp |
⊢ { 〈 𝑧 , 𝑥 〉 } : { 𝑧 } ⟶ { 𝑥 } |
| 50 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) → 𝑥 ∈ 𝐵 ) |
| 51 |
50
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → 𝑥 ∈ 𝐵 ) |
| 52 |
51
|
snssd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → { 𝑥 } ⊆ 𝐵 ) |
| 53 |
|
fss |
⊢ ( ( { 〈 𝑧 , 𝑥 〉 } : { 𝑧 } ⟶ { 𝑥 } ∧ { 𝑥 } ⊆ 𝐵 ) → { 〈 𝑧 , 𝑥 〉 } : { 𝑧 } ⟶ 𝐵 ) |
| 54 |
49 52 53
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → { 〈 𝑧 , 𝑥 〉 } : { 𝑧 } ⟶ 𝐵 ) |
| 55 |
|
res0 |
⊢ ( 𝐹 ↾ ∅ ) = ∅ |
| 56 |
|
res0 |
⊢ ( { 〈 𝑧 , 𝑥 〉 } ↾ ∅ ) = ∅ |
| 57 |
55 56
|
eqtr4i |
⊢ ( 𝐹 ↾ ∅ ) = ( { 〈 𝑧 , 𝑥 〉 } ↾ ∅ ) |
| 58 |
|
disjsn |
⊢ ( ( 𝐴 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝐴 ) |
| 59 |
3 58
|
sylibr |
⊢ ( 𝜑 → ( 𝐴 ∩ { 𝑧 } ) = ∅ ) |
| 60 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( 𝐴 ∩ { 𝑧 } ) = ∅ ) |
| 61 |
60
|
reseq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( 𝐹 ↾ ( 𝐴 ∩ { 𝑧 } ) ) = ( 𝐹 ↾ ∅ ) ) |
| 62 |
60
|
reseq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( { 〈 𝑧 , 𝑥 〉 } ↾ ( 𝐴 ∩ { 𝑧 } ) ) = ( { 〈 𝑧 , 𝑥 〉 } ↾ ∅ ) ) |
| 63 |
57 61 62
|
3eqtr4a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( 𝐹 ↾ ( 𝐴 ∩ { 𝑧 } ) ) = ( { 〈 𝑧 , 𝑥 〉 } ↾ ( 𝐴 ∩ { 𝑧 } ) ) ) |
| 64 |
|
fresaunres1 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ { 〈 𝑧 , 𝑥 〉 } : { 𝑧 } ⟶ 𝐵 ∧ ( 𝐹 ↾ ( 𝐴 ∩ { 𝑧 } ) ) = ( { 〈 𝑧 , 𝑥 〉 } ↾ ( 𝐴 ∩ { 𝑧 } ) ) ) → ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ↾ 𝐴 ) = 𝐹 ) |
| 65 |
45 54 63 64
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ↾ 𝐴 ) = 𝐹 ) |
| 66 |
|
f1f1orn |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ) |
| 67 |
5 66
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ) |
| 68 |
67
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ) |
| 69 |
47
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → { 〈 𝑧 , 𝑥 〉 } : { 𝑧 } –1-1-onto→ { 𝑥 } ) |
| 70 |
|
eldifn |
⊢ ( 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) → ¬ 𝑥 ∈ ran 𝐹 ) |
| 71 |
70
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ¬ 𝑥 ∈ ran 𝐹 ) |
| 72 |
|
disjsn |
⊢ ( ( ran 𝐹 ∩ { 𝑥 } ) = ∅ ↔ ¬ 𝑥 ∈ ran 𝐹 ) |
| 73 |
71 72
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( ran 𝐹 ∩ { 𝑥 } ) = ∅ ) |
| 74 |
|
f1oun |
⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ∧ { 〈 𝑧 , 𝑥 〉 } : { 𝑧 } –1-1-onto→ { 𝑥 } ) ∧ ( ( 𝐴 ∩ { 𝑧 } ) = ∅ ∧ ( ran 𝐹 ∩ { 𝑥 } ) = ∅ ) ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1-onto→ ( ran 𝐹 ∪ { 𝑥 } ) ) |
| 75 |
68 69 60 73 74
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1-onto→ ( ran 𝐹 ∪ { 𝑥 } ) ) |
| 76 |
|
f1of1 |
⊢ ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1-onto→ ( ran 𝐹 ∪ { 𝑥 } ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1→ ( ran 𝐹 ∪ { 𝑥 } ) ) |
| 77 |
75 76
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1→ ( ran 𝐹 ∪ { 𝑥 } ) ) |
| 78 |
45
|
frnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ran 𝐹 ⊆ 𝐵 ) |
| 79 |
78 52
|
unssd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( ran 𝐹 ∪ { 𝑥 } ) ⊆ 𝐵 ) |
| 80 |
|
f1ss |
⊢ ( ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1→ ( ran 𝐹 ∪ { 𝑥 } ) ∧ ( ran 𝐹 ∪ { 𝑥 } ) ⊆ 𝐵 ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) |
| 81 |
77 79 80
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) |
| 82 |
44 1
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 83 |
82
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → 𝐹 ∈ V ) |
| 84 |
|
snex |
⊢ { 〈 𝑧 , 𝑥 〉 } ∈ V |
| 85 |
|
unexg |
⊢ ( ( 𝐹 ∈ V ∧ { 〈 𝑧 , 𝑥 〉 } ∈ V ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ∈ V ) |
| 86 |
83 84 85
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ∈ V ) |
| 87 |
|
reseq1 |
⊢ ( 𝑓 = ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) → ( 𝑓 ↾ 𝐴 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ↾ 𝐴 ) ) |
| 88 |
87
|
eqeq1d |
⊢ ( 𝑓 = ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) → ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ↔ ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ↾ 𝐴 ) = 𝐹 ) ) |
| 89 |
|
f1eq1 |
⊢ ( 𝑓 = ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) → ( 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ↔ ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) |
| 90 |
88 89
|
anbi12d |
⊢ ( 𝑓 = ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) → ( ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ↔ ( ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ↾ 𝐴 ) = 𝐹 ∧ ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) ) |
| 91 |
90
|
elabg |
⊢ ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ∈ V → ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ∈ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ↔ ( ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ↾ 𝐴 ) = 𝐹 ∧ ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) ) |
| 92 |
86 91
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ∈ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ↔ ( ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ↾ 𝐴 ) = 𝐹 ∧ ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) ) |
| 93 |
65 81 92
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ∈ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) |
| 94 |
93
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ∈ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) |
| 95 |
17
|
anbi1i |
⊢ ( ( 𝑔 ∈ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ↔ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) |
| 96 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) |
| 97 |
|
f1fn |
⊢ ( 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 → 𝑔 Fn ( 𝐴 ∪ { 𝑧 } ) ) |
| 98 |
96 97
|
syl |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → 𝑔 Fn ( 𝐴 ∪ { 𝑧 } ) ) |
| 99 |
75
|
adantrl |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1-onto→ ( ran 𝐹 ∪ { 𝑥 } ) ) |
| 100 |
|
f1ofn |
⊢ ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1-onto→ ( ran 𝐹 ∪ { 𝑥 } ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) Fn ( 𝐴 ∪ { 𝑧 } ) ) |
| 101 |
99 100
|
syl |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) Fn ( 𝐴 ∪ { 𝑧 } ) ) |
| 102 |
|
eqfnfv |
⊢ ( ( 𝑔 Fn ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) Fn ( 𝐴 ∪ { 𝑧 } ) ) → ( 𝑔 = ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ↔ ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝑧 } ) ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ) ) |
| 103 |
98 101 102
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ( 𝑔 = ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ↔ ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝑧 } ) ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ) ) |
| 104 |
|
fvres |
⊢ ( 𝑦 ∈ 𝐴 → ( ( 𝑔 ↾ 𝐴 ) ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ) |
| 105 |
104
|
eqcomd |
⊢ ( 𝑦 ∈ 𝐴 → ( 𝑔 ‘ 𝑦 ) = ( ( 𝑔 ↾ 𝐴 ) ‘ 𝑦 ) ) |
| 106 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ( 𝑔 ↾ 𝐴 ) = 𝐹 ) |
| 107 |
106
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ( ( 𝑔 ↾ 𝐴 ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 108 |
105 107
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 109 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
| 110 |
|
f1fn |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 Fn 𝐴 ) |
| 111 |
109 110
|
syl |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝐹 Fn 𝐴 ) |
| 112 |
21 46
|
fnsn |
⊢ { 〈 𝑧 , 𝑥 〉 } Fn { 𝑧 } |
| 113 |
112
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → { 〈 𝑧 , 𝑥 〉 } Fn { 𝑧 } ) |
| 114 |
59
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝐴 ∩ { 𝑧 } ) = ∅ ) |
| 115 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) |
| 116 |
111 113 114 115
|
fvun1d |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 117 |
108 116
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ) |
| 118 |
117
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ) |
| 119 |
118
|
biantrurd |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ( ∀ 𝑦 ∈ { 𝑧 } ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ↔ ( ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ { 𝑧 } ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ) ) ) |
| 120 |
|
ralunb |
⊢ ( ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝑧 } ) ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ↔ ( ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ { 𝑧 } ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ) ) |
| 121 |
119 120
|
bitr4di |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ( ∀ 𝑦 ∈ { 𝑧 } ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝑧 } ) ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ) ) |
| 122 |
44
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
| 123 |
122
|
eleq2d |
⊢ ( 𝜑 → ( 𝑧 ∈ dom 𝐹 ↔ 𝑧 ∈ 𝐴 ) ) |
| 124 |
3 123
|
mtbird |
⊢ ( 𝜑 → ¬ 𝑧 ∈ dom 𝐹 ) |
| 125 |
124
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ¬ 𝑧 ∈ dom 𝐹 ) |
| 126 |
|
fsnunfv |
⊢ ( ( 𝑧 ∈ V ∧ 𝑥 ∈ V ∧ ¬ 𝑧 ∈ dom 𝐹 ) → ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑧 ) = 𝑥 ) |
| 127 |
21 46 125 126
|
mp3an12i |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑧 ) = 𝑥 ) |
| 128 |
127
|
eqeq2d |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ( ( 𝑔 ‘ 𝑧 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑧 ) ↔ ( 𝑔 ‘ 𝑧 ) = 𝑥 ) ) |
| 129 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑔 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑧 ) ) |
| 130 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑧 ) ) |
| 131 |
129 130
|
eqeq12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ↔ ( 𝑔 ‘ 𝑧 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑧 ) ) ) |
| 132 |
21 131
|
ralsn |
⊢ ( ∀ 𝑦 ∈ { 𝑧 } ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ↔ ( 𝑔 ‘ 𝑧 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑧 ) ) |
| 133 |
|
eqcom |
⊢ ( 𝑥 = ( 𝑔 ‘ 𝑧 ) ↔ ( 𝑔 ‘ 𝑧 ) = 𝑥 ) |
| 134 |
128 132 133
|
3bitr4g |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ( ∀ 𝑦 ∈ { 𝑧 } ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ↔ 𝑥 = ( 𝑔 ‘ 𝑧 ) ) ) |
| 135 |
103 121 134
|
3bitr2d |
⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ( 𝑔 = ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ↔ 𝑥 = ( 𝑔 ‘ 𝑧 ) ) ) |
| 136 |
135
|
ex |
⊢ ( 𝜑 → ( ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( 𝑔 = ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ↔ 𝑥 = ( 𝑔 ‘ 𝑧 ) ) ) ) |
| 137 |
95 136
|
biimtrid |
⊢ ( 𝜑 → ( ( 𝑔 ∈ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( 𝑔 = ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ↔ 𝑥 = ( 𝑔 ‘ 𝑧 ) ) ) ) |
| 138 |
10 11 42 94 137
|
en3d |
⊢ ( 𝜑 → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ≈ ( 𝐵 ∖ ran 𝐹 ) ) |