| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hashf1lem2.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 2 |
|
hashf1lem2.2 |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
| 3 |
|
hashf1lem2.3 |
⊢ ( 𝜑 → ¬ 𝑧 ∈ 𝐴 ) |
| 4 |
|
hashf1lem2.4 |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) |
| 5 |
|
ssid |
⊢ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } |
| 6 |
|
mapfi |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ∈ Fin ) → ( 𝐵 ↑m 𝐴 ) ∈ Fin ) |
| 7 |
2 1 6
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 ↑m 𝐴 ) ∈ Fin ) |
| 8 |
|
f1f |
⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 → 𝑓 : 𝐴 ⟶ 𝐵 ) |
| 9 |
2 1
|
elmapd |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ↔ 𝑓 : 𝐴 ⟶ 𝐵 ) ) |
| 10 |
8 9
|
imbitrrid |
⊢ ( 𝜑 → ( 𝑓 : 𝐴 –1-1→ 𝐵 → 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ) ) |
| 11 |
10
|
abssdv |
⊢ ( 𝜑 → { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ⊆ ( 𝐵 ↑m 𝐴 ) ) |
| 12 |
7 11
|
ssfid |
⊢ ( 𝜑 → { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ∈ Fin ) |
| 13 |
|
sseq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ↔ ∅ ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) |
| 14 |
|
eleq2 |
⊢ ( 𝑥 = ∅ → ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ↔ ( 𝑓 ↾ 𝐴 ) ∈ ∅ ) ) |
| 15 |
|
noel |
⊢ ¬ ( 𝑓 ↾ 𝐴 ) ∈ ∅ |
| 16 |
15
|
pm2.21i |
⊢ ( ( 𝑓 ↾ 𝐴 ) ∈ ∅ → 𝑓 ∈ ∅ ) |
| 17 |
14 16
|
biimtrdi |
⊢ ( 𝑥 = ∅ → ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 → 𝑓 ∈ ∅ ) ) |
| 18 |
17
|
adantrd |
⊢ ( 𝑥 = ∅ → ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) → 𝑓 ∈ ∅ ) ) |
| 19 |
18
|
abssdv |
⊢ ( 𝑥 = ∅ → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ⊆ ∅ ) |
| 20 |
|
ss0 |
⊢ ( { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ⊆ ∅ → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } = ∅ ) |
| 21 |
19 20
|
syl |
⊢ ( 𝑥 = ∅ → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } = ∅ ) |
| 22 |
21
|
fveq2d |
⊢ ( 𝑥 = ∅ → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ♯ ‘ ∅ ) ) |
| 23 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
| 24 |
22 23
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = 0 ) |
| 25 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ∅ ) ) |
| 26 |
25 23
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = 0 ) |
| 27 |
26
|
oveq2d |
⊢ ( 𝑥 = ∅ → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · 0 ) ) |
| 28 |
24 27
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) ↔ 0 = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · 0 ) ) ) |
| 29 |
13 28
|
imbi12d |
⊢ ( 𝑥 = ∅ → ( ( 𝑥 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) ) ↔ ( ∅ ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → 0 = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · 0 ) ) ) ) |
| 30 |
29
|
imbi2d |
⊢ ( 𝑥 = ∅ → ( ( 𝜑 → ( 𝑥 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) ) ) ↔ ( 𝜑 → ( ∅ ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → 0 = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · 0 ) ) ) ) ) |
| 31 |
|
sseq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ↔ 𝑦 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) |
| 32 |
|
eleq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ↔ ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ) ) |
| 33 |
32
|
anbi1d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ↔ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) ) |
| 34 |
33
|
abbidv |
⊢ ( 𝑥 = 𝑦 → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } = { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) |
| 35 |
34
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) |
| 36 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) |
| 37 |
36
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) ) |
| 38 |
35 37
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) ↔ ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) ) ) |
| 39 |
31 38
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) ) ↔ ( 𝑦 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) ) ) ) |
| 40 |
39
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 → ( 𝑥 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) ) ) ↔ ( 𝜑 → ( 𝑦 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) ) ) ) ) |
| 41 |
|
sseq1 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑎 } ) → ( 𝑥 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ↔ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) |
| 42 |
|
eleq2 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑎 } ) → ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ↔ ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ) ) |
| 43 |
42
|
anbi1d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑎 } ) → ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ↔ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) ) |
| 44 |
43
|
abbidv |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑎 } ) → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } = { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) |
| 45 |
44
|
fveq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑎 } ) → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) |
| 46 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑎 } ) → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) |
| 47 |
46
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑎 } ) → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) ) |
| 48 |
45 47
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑎 } ) → ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) ↔ ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) ) ) |
| 49 |
41 48
|
imbi12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑎 } ) → ( ( 𝑥 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) ) ↔ ( ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) ) ) ) |
| 50 |
49
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑎 } ) → ( ( 𝜑 → ( 𝑥 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) ) ) ↔ ( 𝜑 → ( ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) ) ) ) ) |
| 51 |
|
sseq1 |
⊢ ( 𝑥 = { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( 𝑥 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ↔ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) |
| 52 |
|
f1eq1 |
⊢ ( 𝑓 = 𝑦 → ( 𝑓 : 𝐴 –1-1→ 𝐵 ↔ 𝑦 : 𝐴 –1-1→ 𝐵 ) ) |
| 53 |
52
|
cbvabv |
⊢ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } = { 𝑦 ∣ 𝑦 : 𝐴 –1-1→ 𝐵 } |
| 54 |
53
|
eqeq2i |
⊢ ( 𝑥 = { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ↔ 𝑥 = { 𝑦 ∣ 𝑦 : 𝐴 –1-1→ 𝐵 } ) |
| 55 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ { 𝑧 } ) |
| 56 |
|
f1ssres |
⊢ ( ( 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ∧ 𝐴 ⊆ ( 𝐴 ∪ { 𝑧 } ) ) → ( 𝑓 ↾ 𝐴 ) : 𝐴 –1-1→ 𝐵 ) |
| 57 |
55 56
|
mpan2 |
⊢ ( 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 → ( 𝑓 ↾ 𝐴 ) : 𝐴 –1-1→ 𝐵 ) |
| 58 |
|
vex |
⊢ 𝑓 ∈ V |
| 59 |
58
|
resex |
⊢ ( 𝑓 ↾ 𝐴 ) ∈ V |
| 60 |
|
f1eq1 |
⊢ ( 𝑦 = ( 𝑓 ↾ 𝐴 ) → ( 𝑦 : 𝐴 –1-1→ 𝐵 ↔ ( 𝑓 ↾ 𝐴 ) : 𝐴 –1-1→ 𝐵 ) ) |
| 61 |
59 60
|
elab |
⊢ ( ( 𝑓 ↾ 𝐴 ) ∈ { 𝑦 ∣ 𝑦 : 𝐴 –1-1→ 𝐵 } ↔ ( 𝑓 ↾ 𝐴 ) : 𝐴 –1-1→ 𝐵 ) |
| 62 |
57 61
|
sylibr |
⊢ ( 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 → ( 𝑓 ↾ 𝐴 ) ∈ { 𝑦 ∣ 𝑦 : 𝐴 –1-1→ 𝐵 } ) |
| 63 |
|
eleq2 |
⊢ ( 𝑥 = { 𝑦 ∣ 𝑦 : 𝐴 –1-1→ 𝐵 } → ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ↔ ( 𝑓 ↾ 𝐴 ) ∈ { 𝑦 ∣ 𝑦 : 𝐴 –1-1→ 𝐵 } ) ) |
| 64 |
62 63
|
imbitrrid |
⊢ ( 𝑥 = { 𝑦 ∣ 𝑦 : 𝐴 –1-1→ 𝐵 } → ( 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 → ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ) ) |
| 65 |
64
|
pm4.71rd |
⊢ ( 𝑥 = { 𝑦 ∣ 𝑦 : 𝐴 –1-1→ 𝐵 } → ( 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ↔ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) ) |
| 66 |
65
|
bicomd |
⊢ ( 𝑥 = { 𝑦 ∣ 𝑦 : 𝐴 –1-1→ 𝐵 } → ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ↔ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) |
| 67 |
66
|
abbidv |
⊢ ( 𝑥 = { 𝑦 ∣ 𝑦 : 𝐴 –1-1→ 𝐵 } → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } = { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) |
| 68 |
54 67
|
sylbi |
⊢ ( 𝑥 = { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } = { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) |
| 69 |
68
|
fveq2d |
⊢ ( 𝑥 = { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) ) |
| 70 |
|
fveq2 |
⊢ ( 𝑥 = { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) |
| 71 |
70
|
oveq2d |
⊢ ( 𝑥 = { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) ) |
| 72 |
69 71
|
eqeq12d |
⊢ ( 𝑥 = { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) ↔ ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) ) ) |
| 73 |
51 72
|
imbi12d |
⊢ ( 𝑥 = { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ( 𝑥 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) ) ↔ ( { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) ) ) ) |
| 74 |
73
|
imbi2d |
⊢ ( 𝑥 = { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ( 𝜑 → ( 𝑥 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) ) ) ↔ ( 𝜑 → ( { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) ) ) ) ) |
| 75 |
|
hashcl |
⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 76 |
2 75
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 77 |
76
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℂ ) |
| 78 |
|
hashcl |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 79 |
1 78
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 80 |
79
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℂ ) |
| 81 |
77 80
|
subcld |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ∈ ℂ ) |
| 82 |
81
|
mul01d |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · 0 ) = 0 ) |
| 83 |
82
|
eqcomd |
⊢ ( 𝜑 → 0 = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · 0 ) ) |
| 84 |
83
|
a1d |
⊢ ( 𝜑 → ( ∅ ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → 0 = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · 0 ) ) ) |
| 85 |
|
ssun1 |
⊢ 𝑦 ⊆ ( 𝑦 ∪ { 𝑎 } ) |
| 86 |
|
sstr |
⊢ ( ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑎 } ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) → 𝑦 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) |
| 87 |
85 86
|
mpan |
⊢ ( ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → 𝑦 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) |
| 88 |
87
|
imim1i |
⊢ ( ( 𝑦 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) ) → ( ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) ) ) |
| 89 |
|
oveq1 |
⊢ ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) → ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) + ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ) = ( ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) + ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ) ) |
| 90 |
|
elun |
⊢ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ↔ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∨ ( 𝑓 ↾ 𝐴 ) ∈ { 𝑎 } ) ) |
| 91 |
59
|
elsn |
⊢ ( ( 𝑓 ↾ 𝐴 ) ∈ { 𝑎 } ↔ ( 𝑓 ↾ 𝐴 ) = 𝑎 ) |
| 92 |
91
|
orbi2i |
⊢ ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∨ ( 𝑓 ↾ 𝐴 ) ∈ { 𝑎 } ) ↔ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∨ ( 𝑓 ↾ 𝐴 ) = 𝑎 ) ) |
| 93 |
90 92
|
bitri |
⊢ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ↔ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∨ ( 𝑓 ↾ 𝐴 ) = 𝑎 ) ) |
| 94 |
93
|
anbi1i |
⊢ ( ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ↔ ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∨ ( 𝑓 ↾ 𝐴 ) = 𝑎 ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) |
| 95 |
|
andir |
⊢ ( ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∨ ( 𝑓 ↾ 𝐴 ) = 𝑎 ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ↔ ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∨ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) ) |
| 96 |
94 95
|
bitri |
⊢ ( ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ↔ ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∨ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) ) |
| 97 |
96
|
abbii |
⊢ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } = { 𝑓 ∣ ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∨ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) } |
| 98 |
|
unab |
⊢ ( { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∪ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = { 𝑓 ∣ ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∨ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) } |
| 99 |
97 98
|
eqtr4i |
⊢ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } = ( { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∪ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) |
| 100 |
99
|
fveq2i |
⊢ ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ♯ ‘ ( { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∪ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) |
| 101 |
|
snfi |
⊢ { 𝑧 } ∈ Fin |
| 102 |
|
unfi |
⊢ ( ( 𝐴 ∈ Fin ∧ { 𝑧 } ∈ Fin ) → ( 𝐴 ∪ { 𝑧 } ) ∈ Fin ) |
| 103 |
1 101 102
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 ∪ { 𝑧 } ) ∈ Fin ) |
| 104 |
|
mapvalg |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝐴 ∪ { 𝑧 } ) ∈ Fin ) → ( 𝐵 ↑m ( 𝐴 ∪ { 𝑧 } ) ) = { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 } ) |
| 105 |
2 103 104
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 ↑m ( 𝐴 ∪ { 𝑧 } ) ) = { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 } ) |
| 106 |
|
mapfi |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝐴 ∪ { 𝑧 } ) ∈ Fin ) → ( 𝐵 ↑m ( 𝐴 ∪ { 𝑧 } ) ) ∈ Fin ) |
| 107 |
2 103 106
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 ↑m ( 𝐴 ∪ { 𝑧 } ) ) ∈ Fin ) |
| 108 |
105 107
|
eqeltrrd |
⊢ ( 𝜑 → { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 } ∈ Fin ) |
| 109 |
|
f1f |
⊢ ( 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 → 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 ) |
| 110 |
109
|
adantl |
⊢ ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) → 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 ) |
| 111 |
110
|
ss2abi |
⊢ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ⊆ { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 } |
| 112 |
|
ssfi |
⊢ ( ( { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 } ∈ Fin ∧ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ⊆ { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 } ) → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∈ Fin ) |
| 113 |
108 111 112
|
sylancl |
⊢ ( 𝜑 → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∈ Fin ) |
| 114 |
113
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∈ Fin ) |
| 115 |
109
|
adantl |
⊢ ( ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) → 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 ) |
| 116 |
115
|
ss2abi |
⊢ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ⊆ { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 } |
| 117 |
|
ssfi |
⊢ ( ( { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 } ∈ Fin ∧ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ⊆ { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 } ) → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∈ Fin ) |
| 118 |
108 116 117
|
sylancl |
⊢ ( 𝜑 → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∈ Fin ) |
| 119 |
118
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∈ Fin ) |
| 120 |
|
inab |
⊢ ( { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∩ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = { 𝑓 ∣ ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) } |
| 121 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ¬ 𝑎 ∈ 𝑦 ) |
| 122 |
|
abn0 |
⊢ ( { 𝑓 ∣ ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) } ≠ ∅ ↔ ∃ 𝑓 ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) ) |
| 123 |
|
simprl |
⊢ ( ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → ( 𝑓 ↾ 𝐴 ) = 𝑎 ) |
| 124 |
|
simpll |
⊢ ( ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ) |
| 125 |
123 124
|
eqeltrrd |
⊢ ( ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → 𝑎 ∈ 𝑦 ) |
| 126 |
125
|
exlimiv |
⊢ ( ∃ 𝑓 ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → 𝑎 ∈ 𝑦 ) |
| 127 |
122 126
|
sylbi |
⊢ ( { 𝑓 ∣ ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) } ≠ ∅ → 𝑎 ∈ 𝑦 ) |
| 128 |
127
|
necon1bi |
⊢ ( ¬ 𝑎 ∈ 𝑦 → { 𝑓 ∣ ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) } = ∅ ) |
| 129 |
121 128
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → { 𝑓 ∣ ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) } = ∅ ) |
| 130 |
120 129
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∩ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ∅ ) |
| 131 |
|
hashun |
⊢ ( ( { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∈ Fin ∧ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∈ Fin ∧ ( { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∩ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ∅ ) → ( ♯ ‘ ( { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∪ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) = ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) + ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) ) |
| 132 |
114 119 130 131
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ♯ ‘ ( { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∪ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) = ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) + ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) ) |
| 133 |
100 132
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) + ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) ) |
| 134 |
|
simpr |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) → ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) |
| 135 |
134
|
unssbd |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) → { 𝑎 } ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) |
| 136 |
|
vex |
⊢ 𝑎 ∈ V |
| 137 |
136
|
snss |
⊢ ( 𝑎 ∈ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ↔ { 𝑎 } ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) |
| 138 |
135 137
|
sylibr |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) → 𝑎 ∈ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) |
| 139 |
|
f1eq1 |
⊢ ( 𝑓 = 𝑎 → ( 𝑓 : 𝐴 –1-1→ 𝐵 ↔ 𝑎 : 𝐴 –1-1→ 𝐵 ) ) |
| 140 |
136 139
|
elab |
⊢ ( 𝑎 ∈ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ↔ 𝑎 : 𝐴 –1-1→ 𝐵 ) |
| 141 |
138 140
|
sylib |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) → 𝑎 : 𝐴 –1-1→ 𝐵 ) |
| 142 |
80
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ♯ ‘ 𝐴 ) ∈ ℂ ) |
| 143 |
118
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∈ Fin ) |
| 144 |
|
hashcl |
⊢ ( { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∈ Fin → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ∈ ℕ0 ) |
| 145 |
143 144
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ∈ ℕ0 ) |
| 146 |
145
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ∈ ℂ ) |
| 147 |
142 146
|
pncan2d |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) − ( ♯ ‘ 𝐴 ) ) = ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) |
| 148 |
|
f1f1orn |
⊢ ( 𝑎 : 𝐴 –1-1→ 𝐵 → 𝑎 : 𝐴 –1-1-onto→ ran 𝑎 ) |
| 149 |
148
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → 𝑎 : 𝐴 –1-1-onto→ ran 𝑎 ) |
| 150 |
|
f1oen3g |
⊢ ( ( 𝑎 ∈ V ∧ 𝑎 : 𝐴 –1-1-onto→ ran 𝑎 ) → 𝐴 ≈ ran 𝑎 ) |
| 151 |
136 149 150
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → 𝐴 ≈ ran 𝑎 ) |
| 152 |
|
hasheni |
⊢ ( 𝐴 ≈ ran 𝑎 → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ ran 𝑎 ) ) |
| 153 |
151 152
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ ran 𝑎 ) ) |
| 154 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → 𝐴 ∈ Fin ) |
| 155 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → 𝐵 ∈ Fin ) |
| 156 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ¬ 𝑧 ∈ 𝐴 ) |
| 157 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ( ♯ ‘ 𝐴 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) |
| 158 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → 𝑎 : 𝐴 –1-1→ 𝐵 ) |
| 159 |
154 155 156 157 158
|
hashf1lem1 |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ≈ ( 𝐵 ∖ ran 𝑎 ) ) |
| 160 |
|
hasheni |
⊢ ( { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ≈ ( 𝐵 ∖ ran 𝑎 ) → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ♯ ‘ ( 𝐵 ∖ ran 𝑎 ) ) ) |
| 161 |
159 160
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ♯ ‘ ( 𝐵 ∖ ran 𝑎 ) ) ) |
| 162 |
153 161
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) = ( ( ♯ ‘ ran 𝑎 ) + ( ♯ ‘ ( 𝐵 ∖ ran 𝑎 ) ) ) ) |
| 163 |
|
f1f |
⊢ ( 𝑎 : 𝐴 –1-1→ 𝐵 → 𝑎 : 𝐴 ⟶ 𝐵 ) |
| 164 |
163
|
frnd |
⊢ ( 𝑎 : 𝐴 –1-1→ 𝐵 → ran 𝑎 ⊆ 𝐵 ) |
| 165 |
164
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ran 𝑎 ⊆ 𝐵 ) |
| 166 |
155 165
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ran 𝑎 ∈ Fin ) |
| 167 |
|
diffi |
⊢ ( 𝐵 ∈ Fin → ( 𝐵 ∖ ran 𝑎 ) ∈ Fin ) |
| 168 |
155 167
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( 𝐵 ∖ ran 𝑎 ) ∈ Fin ) |
| 169 |
|
disjdif |
⊢ ( ran 𝑎 ∩ ( 𝐵 ∖ ran 𝑎 ) ) = ∅ |
| 170 |
169
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ran 𝑎 ∩ ( 𝐵 ∖ ran 𝑎 ) ) = ∅ ) |
| 171 |
|
hashun |
⊢ ( ( ran 𝑎 ∈ Fin ∧ ( 𝐵 ∖ ran 𝑎 ) ∈ Fin ∧ ( ran 𝑎 ∩ ( 𝐵 ∖ ran 𝑎 ) ) = ∅ ) → ( ♯ ‘ ( ran 𝑎 ∪ ( 𝐵 ∖ ran 𝑎 ) ) ) = ( ( ♯ ‘ ran 𝑎 ) + ( ♯ ‘ ( 𝐵 ∖ ran 𝑎 ) ) ) ) |
| 172 |
166 168 170 171
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ♯ ‘ ( ran 𝑎 ∪ ( 𝐵 ∖ ran 𝑎 ) ) ) = ( ( ♯ ‘ ran 𝑎 ) + ( ♯ ‘ ( 𝐵 ∖ ran 𝑎 ) ) ) ) |
| 173 |
|
undif |
⊢ ( ran 𝑎 ⊆ 𝐵 ↔ ( ran 𝑎 ∪ ( 𝐵 ∖ ran 𝑎 ) ) = 𝐵 ) |
| 174 |
165 173
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ran 𝑎 ∪ ( 𝐵 ∖ ran 𝑎 ) ) = 𝐵 ) |
| 175 |
174
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ♯ ‘ ( ran 𝑎 ∪ ( 𝐵 ∖ ran 𝑎 ) ) ) = ( ♯ ‘ 𝐵 ) ) |
| 176 |
162 172 175
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) = ( ♯ ‘ 𝐵 ) ) |
| 177 |
176
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) − ( ♯ ‘ 𝐴 ) ) = ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ) |
| 178 |
147 177
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ) |
| 179 |
141 178
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ) |
| 180 |
179
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) + ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) = ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) + ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ) ) |
| 181 |
133 180
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) + ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ) ) |
| 182 |
|
hashunsng |
⊢ ( 𝑎 ∈ V → ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 183 |
182
|
elv |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) |
| 184 |
183
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) |
| 185 |
184
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 186 |
81
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ∈ ℂ ) |
| 187 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → 𝑦 ∈ Fin ) |
| 188 |
|
hashcl |
⊢ ( 𝑦 ∈ Fin → ( ♯ ‘ 𝑦 ) ∈ ℕ0 ) |
| 189 |
187 188
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ♯ ‘ 𝑦 ) ∈ ℕ0 ) |
| 190 |
189
|
nn0cnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ♯ ‘ 𝑦 ) ∈ ℂ ) |
| 191 |
|
1cnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → 1 ∈ ℂ ) |
| 192 |
186 190 191
|
adddid |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ( ♯ ‘ 𝑦 ) + 1 ) ) = ( ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) + ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · 1 ) ) ) |
| 193 |
186
|
mulridd |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · 1 ) = ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ) |
| 194 |
193
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) + ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · 1 ) ) = ( ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) + ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ) ) |
| 195 |
185 192 194
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) = ( ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) + ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ) ) |
| 196 |
181 195
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) ↔ ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) + ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ) = ( ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) + ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ) ) ) |
| 197 |
89 196
|
imbitrrid |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) ) ) |
| 198 |
197
|
expr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ) → ( ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) ) ) ) |
| 199 |
198
|
a2d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ) → ( ( ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) ) → ( ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) ) ) ) |
| 200 |
88 199
|
syl5 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ) → ( ( 𝑦 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) ) → ( ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) ) ) ) |
| 201 |
200
|
expcom |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) → ( 𝜑 → ( ( 𝑦 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) ) → ( ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) ) ) ) ) |
| 202 |
201
|
a2d |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) → ( ( 𝜑 → ( 𝑦 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) ) ) → ( 𝜑 → ( ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) ) ) ) ) |
| 203 |
30 40 50 74 84 202
|
findcard2s |
⊢ ( { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ∈ Fin → ( 𝜑 → ( { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) ) ) ) |
| 204 |
12 203
|
mpcom |
⊢ ( 𝜑 → ( { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) ) ) |
| 205 |
5 204
|
mpi |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) ) |