| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmuz2 |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
| 2 |
|
euclemma |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑃 ∥ ( 𝑥 · 𝑦 ) ↔ ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ) |
| 3 |
2
|
3expb |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑃 ∥ ( 𝑥 · 𝑦 ) ↔ ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ) |
| 4 |
3
|
biimpd |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑃 ∥ ( 𝑥 · 𝑦 ) → ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ) |
| 5 |
4
|
ralrimivva |
⊢ ( 𝑃 ∈ ℙ → ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( 𝑃 ∥ ( 𝑥 · 𝑦 ) → ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ) |
| 6 |
1 5
|
jca |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( 𝑃 ∥ ( 𝑥 · 𝑦 ) → ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ) ) |
| 7 |
|
simpl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( 𝑃 ∥ ( 𝑥 · 𝑦 ) → ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ) → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
| 8 |
|
eluz2nn |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 𝑃 ∈ ℕ ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → 𝑃 ∈ ℕ ) |
| 10 |
9
|
nnzd |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → 𝑃 ∈ ℤ ) |
| 11 |
|
iddvds |
⊢ ( 𝑃 ∈ ℤ → 𝑃 ∥ 𝑃 ) |
| 12 |
10 11
|
syl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → 𝑃 ∥ 𝑃 ) |
| 13 |
|
nncn |
⊢ ( 𝑃 ∈ ℕ → 𝑃 ∈ ℂ ) |
| 14 |
9 13
|
syl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → 𝑃 ∈ ℂ ) |
| 15 |
|
nncn |
⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℂ ) |
| 16 |
15
|
ad2antrl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → 𝑧 ∈ ℂ ) |
| 17 |
|
nnne0 |
⊢ ( 𝑧 ∈ ℕ → 𝑧 ≠ 0 ) |
| 18 |
17
|
ad2antrl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → 𝑧 ≠ 0 ) |
| 19 |
14 16 18
|
divcan1d |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → ( ( 𝑃 / 𝑧 ) · 𝑧 ) = 𝑃 ) |
| 20 |
12 19
|
breqtrrd |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → 𝑃 ∥ ( ( 𝑃 / 𝑧 ) · 𝑧 ) ) |
| 21 |
20
|
adantr |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) ∧ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( 𝑃 ∥ ( 𝑥 · 𝑦 ) → ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ) → 𝑃 ∥ ( ( 𝑃 / 𝑧 ) · 𝑧 ) ) |
| 22 |
|
simprr |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → 𝑧 ∥ 𝑃 ) |
| 23 |
|
simprl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → 𝑧 ∈ ℕ ) |
| 24 |
|
nndivdvds |
⊢ ( ( 𝑃 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( 𝑧 ∥ 𝑃 ↔ ( 𝑃 / 𝑧 ) ∈ ℕ ) ) |
| 25 |
9 23 24
|
syl2anc |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → ( 𝑧 ∥ 𝑃 ↔ ( 𝑃 / 𝑧 ) ∈ ℕ ) ) |
| 26 |
22 25
|
mpbid |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → ( 𝑃 / 𝑧 ) ∈ ℕ ) |
| 27 |
26
|
nnzd |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → ( 𝑃 / 𝑧 ) ∈ ℤ ) |
| 28 |
|
nnz |
⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℤ ) |
| 29 |
28
|
ad2antrl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → 𝑧 ∈ ℤ ) |
| 30 |
27 29
|
jca |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → ( ( 𝑃 / 𝑧 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) |
| 31 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑃 / 𝑧 ) → ( 𝑥 · 𝑦 ) = ( ( 𝑃 / 𝑧 ) · 𝑦 ) ) |
| 32 |
31
|
breq2d |
⊢ ( 𝑥 = ( 𝑃 / 𝑧 ) → ( 𝑃 ∥ ( 𝑥 · 𝑦 ) ↔ 𝑃 ∥ ( ( 𝑃 / 𝑧 ) · 𝑦 ) ) ) |
| 33 |
|
breq2 |
⊢ ( 𝑥 = ( 𝑃 / 𝑧 ) → ( 𝑃 ∥ 𝑥 ↔ 𝑃 ∥ ( 𝑃 / 𝑧 ) ) ) |
| 34 |
33
|
orbi1d |
⊢ ( 𝑥 = ( 𝑃 / 𝑧 ) → ( ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ↔ ( 𝑃 ∥ ( 𝑃 / 𝑧 ) ∨ 𝑃 ∥ 𝑦 ) ) ) |
| 35 |
32 34
|
imbi12d |
⊢ ( 𝑥 = ( 𝑃 / 𝑧 ) → ( ( 𝑃 ∥ ( 𝑥 · 𝑦 ) → ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ↔ ( 𝑃 ∥ ( ( 𝑃 / 𝑧 ) · 𝑦 ) → ( 𝑃 ∥ ( 𝑃 / 𝑧 ) ∨ 𝑃 ∥ 𝑦 ) ) ) ) |
| 36 |
|
oveq2 |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑃 / 𝑧 ) · 𝑦 ) = ( ( 𝑃 / 𝑧 ) · 𝑧 ) ) |
| 37 |
36
|
breq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝑃 ∥ ( ( 𝑃 / 𝑧 ) · 𝑦 ) ↔ 𝑃 ∥ ( ( 𝑃 / 𝑧 ) · 𝑧 ) ) ) |
| 38 |
|
breq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑃 ∥ 𝑦 ↔ 𝑃 ∥ 𝑧 ) ) |
| 39 |
38
|
orbi2d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑃 ∥ ( 𝑃 / 𝑧 ) ∨ 𝑃 ∥ 𝑦 ) ↔ ( 𝑃 ∥ ( 𝑃 / 𝑧 ) ∨ 𝑃 ∥ 𝑧 ) ) ) |
| 40 |
37 39
|
imbi12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑃 ∥ ( ( 𝑃 / 𝑧 ) · 𝑦 ) → ( 𝑃 ∥ ( 𝑃 / 𝑧 ) ∨ 𝑃 ∥ 𝑦 ) ) ↔ ( 𝑃 ∥ ( ( 𝑃 / 𝑧 ) · 𝑧 ) → ( 𝑃 ∥ ( 𝑃 / 𝑧 ) ∨ 𝑃 ∥ 𝑧 ) ) ) ) |
| 41 |
35 40
|
rspc2va |
⊢ ( ( ( ( 𝑃 / 𝑧 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) ∧ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( 𝑃 ∥ ( 𝑥 · 𝑦 ) → ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ) → ( 𝑃 ∥ ( ( 𝑃 / 𝑧 ) · 𝑧 ) → ( 𝑃 ∥ ( 𝑃 / 𝑧 ) ∨ 𝑃 ∥ 𝑧 ) ) ) |
| 42 |
30 41
|
sylan |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) ∧ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( 𝑃 ∥ ( 𝑥 · 𝑦 ) → ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ) → ( 𝑃 ∥ ( ( 𝑃 / 𝑧 ) · 𝑧 ) → ( 𝑃 ∥ ( 𝑃 / 𝑧 ) ∨ 𝑃 ∥ 𝑧 ) ) ) |
| 43 |
21 42
|
mpd |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) ∧ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( 𝑃 ∥ ( 𝑥 · 𝑦 ) → ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ) → ( 𝑃 ∥ ( 𝑃 / 𝑧 ) ∨ 𝑃 ∥ 𝑧 ) ) |
| 44 |
|
dvdsle |
⊢ ( ( 𝑃 ∈ ℤ ∧ ( 𝑃 / 𝑧 ) ∈ ℕ ) → ( 𝑃 ∥ ( 𝑃 / 𝑧 ) → 𝑃 ≤ ( 𝑃 / 𝑧 ) ) ) |
| 45 |
10 26 44
|
syl2anc |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → ( 𝑃 ∥ ( 𝑃 / 𝑧 ) → 𝑃 ≤ ( 𝑃 / 𝑧 ) ) ) |
| 46 |
14
|
div1d |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → ( 𝑃 / 1 ) = 𝑃 ) |
| 47 |
46
|
breq1d |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → ( ( 𝑃 / 1 ) ≤ ( 𝑃 / 𝑧 ) ↔ 𝑃 ≤ ( 𝑃 / 𝑧 ) ) ) |
| 48 |
45 47
|
sylibrd |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → ( 𝑃 ∥ ( 𝑃 / 𝑧 ) → ( 𝑃 / 1 ) ≤ ( 𝑃 / 𝑧 ) ) ) |
| 49 |
|
nnrp |
⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℝ+ ) |
| 50 |
49
|
rpregt0d |
⊢ ( 𝑧 ∈ ℕ → ( 𝑧 ∈ ℝ ∧ 0 < 𝑧 ) ) |
| 51 |
50
|
ad2antrl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → ( 𝑧 ∈ ℝ ∧ 0 < 𝑧 ) ) |
| 52 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 53 |
|
rpregt0 |
⊢ ( 1 ∈ ℝ+ → ( 1 ∈ ℝ ∧ 0 < 1 ) ) |
| 54 |
52 53
|
mp1i |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → ( 1 ∈ ℝ ∧ 0 < 1 ) ) |
| 55 |
|
nnrp |
⊢ ( 𝑃 ∈ ℕ → 𝑃 ∈ ℝ+ ) |
| 56 |
9 55
|
syl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → 𝑃 ∈ ℝ+ ) |
| 57 |
56
|
rpregt0d |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → ( 𝑃 ∈ ℝ ∧ 0 < 𝑃 ) ) |
| 58 |
|
lediv2 |
⊢ ( ( ( 𝑧 ∈ ℝ ∧ 0 < 𝑧 ) ∧ ( 1 ∈ ℝ ∧ 0 < 1 ) ∧ ( 𝑃 ∈ ℝ ∧ 0 < 𝑃 ) ) → ( 𝑧 ≤ 1 ↔ ( 𝑃 / 1 ) ≤ ( 𝑃 / 𝑧 ) ) ) |
| 59 |
51 54 57 58
|
syl3anc |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → ( 𝑧 ≤ 1 ↔ ( 𝑃 / 1 ) ≤ ( 𝑃 / 𝑧 ) ) ) |
| 60 |
48 59
|
sylibrd |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → ( 𝑃 ∥ ( 𝑃 / 𝑧 ) → 𝑧 ≤ 1 ) ) |
| 61 |
|
nnle1eq1 |
⊢ ( 𝑧 ∈ ℕ → ( 𝑧 ≤ 1 ↔ 𝑧 = 1 ) ) |
| 62 |
61
|
ad2antrl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → ( 𝑧 ≤ 1 ↔ 𝑧 = 1 ) ) |
| 63 |
60 62
|
sylibd |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → ( 𝑃 ∥ ( 𝑃 / 𝑧 ) → 𝑧 = 1 ) ) |
| 64 |
|
nnnn0 |
⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℕ0 ) |
| 65 |
64
|
ad2antrl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → 𝑧 ∈ ℕ0 ) |
| 66 |
65
|
adantr |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) ∧ 𝑃 ∥ 𝑧 ) → 𝑧 ∈ ℕ0 ) |
| 67 |
|
nnnn0 |
⊢ ( 𝑃 ∈ ℕ → 𝑃 ∈ ℕ0 ) |
| 68 |
9 67
|
syl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → 𝑃 ∈ ℕ0 ) |
| 69 |
68
|
adantr |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) ∧ 𝑃 ∥ 𝑧 ) → 𝑃 ∈ ℕ0 ) |
| 70 |
|
simplrr |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) ∧ 𝑃 ∥ 𝑧 ) → 𝑧 ∥ 𝑃 ) |
| 71 |
|
simpr |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) ∧ 𝑃 ∥ 𝑧 ) → 𝑃 ∥ 𝑧 ) |
| 72 |
|
dvdseq |
⊢ ( ( ( 𝑧 ∈ ℕ0 ∧ 𝑃 ∈ ℕ0 ) ∧ ( 𝑧 ∥ 𝑃 ∧ 𝑃 ∥ 𝑧 ) ) → 𝑧 = 𝑃 ) |
| 73 |
66 69 70 71 72
|
syl22anc |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) ∧ 𝑃 ∥ 𝑧 ) → 𝑧 = 𝑃 ) |
| 74 |
73
|
ex |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → ( 𝑃 ∥ 𝑧 → 𝑧 = 𝑃 ) ) |
| 75 |
63 74
|
orim12d |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → ( ( 𝑃 ∥ ( 𝑃 / 𝑧 ) ∨ 𝑃 ∥ 𝑧 ) → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) |
| 76 |
75
|
imp |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) ∧ ( 𝑃 ∥ ( 𝑃 / 𝑧 ) ∨ 𝑃 ∥ 𝑧 ) ) → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) |
| 77 |
43 76
|
syldan |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) ∧ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( 𝑃 ∥ ( 𝑥 · 𝑦 ) → ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ) → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) |
| 78 |
77
|
an32s |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( 𝑃 ∥ ( 𝑥 · 𝑦 ) → ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ) ∧ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) |
| 79 |
78
|
expr |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( 𝑃 ∥ ( 𝑥 · 𝑦 ) → ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ) ∧ 𝑧 ∈ ℕ ) → ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) |
| 80 |
79
|
ralrimiva |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( 𝑃 ∥ ( 𝑥 · 𝑦 ) → ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ) → ∀ 𝑧 ∈ ℕ ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) |
| 81 |
|
isprm2 |
⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ℕ ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ) |
| 82 |
7 80 81
|
sylanbrc |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( 𝑃 ∥ ( 𝑥 · 𝑦 ) → ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ) → 𝑃 ∈ ℙ ) |
| 83 |
6 82
|
impbii |
⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℤ ( 𝑃 ∥ ( 𝑥 · 𝑦 ) → ( 𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦 ) ) ) ) |