| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmuz2 |
|- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
| 2 |
|
euclemma |
|- ( ( P e. Prime /\ x e. ZZ /\ y e. ZZ ) -> ( P || ( x x. y ) <-> ( P || x \/ P || y ) ) ) |
| 3 |
2
|
3expb |
|- ( ( P e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( P || ( x x. y ) <-> ( P || x \/ P || y ) ) ) |
| 4 |
3
|
biimpd |
|- ( ( P e. Prime /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( P || ( x x. y ) -> ( P || x \/ P || y ) ) ) |
| 5 |
4
|
ralrimivva |
|- ( P e. Prime -> A. x e. ZZ A. y e. ZZ ( P || ( x x. y ) -> ( P || x \/ P || y ) ) ) |
| 6 |
1 5
|
jca |
|- ( P e. Prime -> ( P e. ( ZZ>= ` 2 ) /\ A. x e. ZZ A. y e. ZZ ( P || ( x x. y ) -> ( P || x \/ P || y ) ) ) ) |
| 7 |
|
simpl |
|- ( ( P e. ( ZZ>= ` 2 ) /\ A. x e. ZZ A. y e. ZZ ( P || ( x x. y ) -> ( P || x \/ P || y ) ) ) -> P e. ( ZZ>= ` 2 ) ) |
| 8 |
|
eluz2nn |
|- ( P e. ( ZZ>= ` 2 ) -> P e. NN ) |
| 9 |
8
|
adantr |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) -> P e. NN ) |
| 10 |
9
|
nnzd |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) -> P e. ZZ ) |
| 11 |
|
iddvds |
|- ( P e. ZZ -> P || P ) |
| 12 |
10 11
|
syl |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) -> P || P ) |
| 13 |
|
nncn |
|- ( P e. NN -> P e. CC ) |
| 14 |
9 13
|
syl |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) -> P e. CC ) |
| 15 |
|
nncn |
|- ( z e. NN -> z e. CC ) |
| 16 |
15
|
ad2antrl |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) -> z e. CC ) |
| 17 |
|
nnne0 |
|- ( z e. NN -> z =/= 0 ) |
| 18 |
17
|
ad2antrl |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) -> z =/= 0 ) |
| 19 |
14 16 18
|
divcan1d |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) -> ( ( P / z ) x. z ) = P ) |
| 20 |
12 19
|
breqtrrd |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) -> P || ( ( P / z ) x. z ) ) |
| 21 |
20
|
adantr |
|- ( ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) /\ A. x e. ZZ A. y e. ZZ ( P || ( x x. y ) -> ( P || x \/ P || y ) ) ) -> P || ( ( P / z ) x. z ) ) |
| 22 |
|
simprr |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) -> z || P ) |
| 23 |
|
simprl |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) -> z e. NN ) |
| 24 |
|
nndivdvds |
|- ( ( P e. NN /\ z e. NN ) -> ( z || P <-> ( P / z ) e. NN ) ) |
| 25 |
9 23 24
|
syl2anc |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) -> ( z || P <-> ( P / z ) e. NN ) ) |
| 26 |
22 25
|
mpbid |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) -> ( P / z ) e. NN ) |
| 27 |
26
|
nnzd |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) -> ( P / z ) e. ZZ ) |
| 28 |
|
nnz |
|- ( z e. NN -> z e. ZZ ) |
| 29 |
28
|
ad2antrl |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) -> z e. ZZ ) |
| 30 |
27 29
|
jca |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) -> ( ( P / z ) e. ZZ /\ z e. ZZ ) ) |
| 31 |
|
oveq1 |
|- ( x = ( P / z ) -> ( x x. y ) = ( ( P / z ) x. y ) ) |
| 32 |
31
|
breq2d |
|- ( x = ( P / z ) -> ( P || ( x x. y ) <-> P || ( ( P / z ) x. y ) ) ) |
| 33 |
|
breq2 |
|- ( x = ( P / z ) -> ( P || x <-> P || ( P / z ) ) ) |
| 34 |
33
|
orbi1d |
|- ( x = ( P / z ) -> ( ( P || x \/ P || y ) <-> ( P || ( P / z ) \/ P || y ) ) ) |
| 35 |
32 34
|
imbi12d |
|- ( x = ( P / z ) -> ( ( P || ( x x. y ) -> ( P || x \/ P || y ) ) <-> ( P || ( ( P / z ) x. y ) -> ( P || ( P / z ) \/ P || y ) ) ) ) |
| 36 |
|
oveq2 |
|- ( y = z -> ( ( P / z ) x. y ) = ( ( P / z ) x. z ) ) |
| 37 |
36
|
breq2d |
|- ( y = z -> ( P || ( ( P / z ) x. y ) <-> P || ( ( P / z ) x. z ) ) ) |
| 38 |
|
breq2 |
|- ( y = z -> ( P || y <-> P || z ) ) |
| 39 |
38
|
orbi2d |
|- ( y = z -> ( ( P || ( P / z ) \/ P || y ) <-> ( P || ( P / z ) \/ P || z ) ) ) |
| 40 |
37 39
|
imbi12d |
|- ( y = z -> ( ( P || ( ( P / z ) x. y ) -> ( P || ( P / z ) \/ P || y ) ) <-> ( P || ( ( P / z ) x. z ) -> ( P || ( P / z ) \/ P || z ) ) ) ) |
| 41 |
35 40
|
rspc2va |
|- ( ( ( ( P / z ) e. ZZ /\ z e. ZZ ) /\ A. x e. ZZ A. y e. ZZ ( P || ( x x. y ) -> ( P || x \/ P || y ) ) ) -> ( P || ( ( P / z ) x. z ) -> ( P || ( P / z ) \/ P || z ) ) ) |
| 42 |
30 41
|
sylan |
|- ( ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) /\ A. x e. ZZ A. y e. ZZ ( P || ( x x. y ) -> ( P || x \/ P || y ) ) ) -> ( P || ( ( P / z ) x. z ) -> ( P || ( P / z ) \/ P || z ) ) ) |
| 43 |
21 42
|
mpd |
|- ( ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) /\ A. x e. ZZ A. y e. ZZ ( P || ( x x. y ) -> ( P || x \/ P || y ) ) ) -> ( P || ( P / z ) \/ P || z ) ) |
| 44 |
|
dvdsle |
|- ( ( P e. ZZ /\ ( P / z ) e. NN ) -> ( P || ( P / z ) -> P <_ ( P / z ) ) ) |
| 45 |
10 26 44
|
syl2anc |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) -> ( P || ( P / z ) -> P <_ ( P / z ) ) ) |
| 46 |
14
|
div1d |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) -> ( P / 1 ) = P ) |
| 47 |
46
|
breq1d |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) -> ( ( P / 1 ) <_ ( P / z ) <-> P <_ ( P / z ) ) ) |
| 48 |
45 47
|
sylibrd |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) -> ( P || ( P / z ) -> ( P / 1 ) <_ ( P / z ) ) ) |
| 49 |
|
nnrp |
|- ( z e. NN -> z e. RR+ ) |
| 50 |
49
|
rpregt0d |
|- ( z e. NN -> ( z e. RR /\ 0 < z ) ) |
| 51 |
50
|
ad2antrl |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) -> ( z e. RR /\ 0 < z ) ) |
| 52 |
|
1rp |
|- 1 e. RR+ |
| 53 |
|
rpregt0 |
|- ( 1 e. RR+ -> ( 1 e. RR /\ 0 < 1 ) ) |
| 54 |
52 53
|
mp1i |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) -> ( 1 e. RR /\ 0 < 1 ) ) |
| 55 |
|
nnrp |
|- ( P e. NN -> P e. RR+ ) |
| 56 |
9 55
|
syl |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) -> P e. RR+ ) |
| 57 |
56
|
rpregt0d |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) -> ( P e. RR /\ 0 < P ) ) |
| 58 |
|
lediv2 |
|- ( ( ( z e. RR /\ 0 < z ) /\ ( 1 e. RR /\ 0 < 1 ) /\ ( P e. RR /\ 0 < P ) ) -> ( z <_ 1 <-> ( P / 1 ) <_ ( P / z ) ) ) |
| 59 |
51 54 57 58
|
syl3anc |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) -> ( z <_ 1 <-> ( P / 1 ) <_ ( P / z ) ) ) |
| 60 |
48 59
|
sylibrd |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) -> ( P || ( P / z ) -> z <_ 1 ) ) |
| 61 |
|
nnle1eq1 |
|- ( z e. NN -> ( z <_ 1 <-> z = 1 ) ) |
| 62 |
61
|
ad2antrl |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) -> ( z <_ 1 <-> z = 1 ) ) |
| 63 |
60 62
|
sylibd |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) -> ( P || ( P / z ) -> z = 1 ) ) |
| 64 |
|
nnnn0 |
|- ( z e. NN -> z e. NN0 ) |
| 65 |
64
|
ad2antrl |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) -> z e. NN0 ) |
| 66 |
65
|
adantr |
|- ( ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) /\ P || z ) -> z e. NN0 ) |
| 67 |
|
nnnn0 |
|- ( P e. NN -> P e. NN0 ) |
| 68 |
9 67
|
syl |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) -> P e. NN0 ) |
| 69 |
68
|
adantr |
|- ( ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) /\ P || z ) -> P e. NN0 ) |
| 70 |
|
simplrr |
|- ( ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) /\ P || z ) -> z || P ) |
| 71 |
|
simpr |
|- ( ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) /\ P || z ) -> P || z ) |
| 72 |
|
dvdseq |
|- ( ( ( z e. NN0 /\ P e. NN0 ) /\ ( z || P /\ P || z ) ) -> z = P ) |
| 73 |
66 69 70 71 72
|
syl22anc |
|- ( ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) /\ P || z ) -> z = P ) |
| 74 |
73
|
ex |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) -> ( P || z -> z = P ) ) |
| 75 |
63 74
|
orim12d |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) -> ( ( P || ( P / z ) \/ P || z ) -> ( z = 1 \/ z = P ) ) ) |
| 76 |
75
|
imp |
|- ( ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) /\ ( P || ( P / z ) \/ P || z ) ) -> ( z = 1 \/ z = P ) ) |
| 77 |
43 76
|
syldan |
|- ( ( ( P e. ( ZZ>= ` 2 ) /\ ( z e. NN /\ z || P ) ) /\ A. x e. ZZ A. y e. ZZ ( P || ( x x. y ) -> ( P || x \/ P || y ) ) ) -> ( z = 1 \/ z = P ) ) |
| 78 |
77
|
an32s |
|- ( ( ( P e. ( ZZ>= ` 2 ) /\ A. x e. ZZ A. y e. ZZ ( P || ( x x. y ) -> ( P || x \/ P || y ) ) ) /\ ( z e. NN /\ z || P ) ) -> ( z = 1 \/ z = P ) ) |
| 79 |
78
|
expr |
|- ( ( ( P e. ( ZZ>= ` 2 ) /\ A. x e. ZZ A. y e. ZZ ( P || ( x x. y ) -> ( P || x \/ P || y ) ) ) /\ z e. NN ) -> ( z || P -> ( z = 1 \/ z = P ) ) ) |
| 80 |
79
|
ralrimiva |
|- ( ( P e. ( ZZ>= ` 2 ) /\ A. x e. ZZ A. y e. ZZ ( P || ( x x. y ) -> ( P || x \/ P || y ) ) ) -> A. z e. NN ( z || P -> ( z = 1 \/ z = P ) ) ) |
| 81 |
|
isprm2 |
|- ( P e. Prime <-> ( P e. ( ZZ>= ` 2 ) /\ A. z e. NN ( z || P -> ( z = 1 \/ z = P ) ) ) ) |
| 82 |
7 80 81
|
sylanbrc |
|- ( ( P e. ( ZZ>= ` 2 ) /\ A. x e. ZZ A. y e. ZZ ( P || ( x x. y ) -> ( P || x \/ P || y ) ) ) -> P e. Prime ) |
| 83 |
6 82
|
impbii |
|- ( P e. Prime <-> ( P e. ( ZZ>= ` 2 ) /\ A. x e. ZZ A. y e. ZZ ( P || ( x x. y ) -> ( P || x \/ P || y ) ) ) ) |