Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → 𝐴 ∈ ℝ+ ) |
2 |
1
|
rprege0d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |
3 |
|
flge0nn0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ⌊ ‘ 𝐴 ) ∈ ℕ0 ) |
4 |
2 3
|
syl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ⌊ ‘ 𝐴 ) ∈ ℕ0 ) |
5 |
4
|
faccld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ∈ ℕ ) |
6 |
5
|
nnrpd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ∈ ℝ+ ) |
7 |
|
relogcl |
⊢ ( ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ∈ ℝ+ → ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) ∈ ℝ ) |
8 |
6 7
|
syl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) ∈ ℝ ) |
9 |
|
rpre |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) |
10 |
9
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → 𝐴 ∈ ℝ ) |
11 |
|
relogcl |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) |
12 |
11
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( log ‘ 𝐴 ) ∈ ℝ ) |
13 |
|
peano2rem |
⊢ ( ( log ‘ 𝐴 ) ∈ ℝ → ( ( log ‘ 𝐴 ) − 1 ) ∈ ℝ ) |
14 |
12 13
|
syl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ( log ‘ 𝐴 ) − 1 ) ∈ ℝ ) |
15 |
10 14
|
remulcld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( 𝐴 · ( ( log ‘ 𝐴 ) − 1 ) ) ∈ ℝ ) |
16 |
8 15
|
resubcld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) − ( 𝐴 · ( ( log ‘ 𝐴 ) − 1 ) ) ) ∈ ℝ ) |
17 |
16
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) − ( 𝐴 · ( ( log ‘ 𝐴 ) − 1 ) ) ) ∈ ℂ ) |
18 |
17
|
abscld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( abs ‘ ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) − ( 𝐴 · ( ( log ‘ 𝐴 ) − 1 ) ) ) ) ∈ ℝ ) |
19 |
|
peano2rem |
⊢ ( ( abs ‘ ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) − ( 𝐴 · ( ( log ‘ 𝐴 ) − 1 ) ) ) ) ∈ ℝ → ( ( abs ‘ ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) − ( 𝐴 · ( ( log ‘ 𝐴 ) − 1 ) ) ) ) − 1 ) ∈ ℝ ) |
20 |
18 19
|
syl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ( abs ‘ ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) − ( 𝐴 · ( ( log ‘ 𝐴 ) − 1 ) ) ) ) − 1 ) ∈ ℝ ) |
21 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
22 |
|
subcl |
⊢ ( ( ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) − ( 𝐴 · ( ( log ‘ 𝐴 ) − 1 ) ) ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) − ( 𝐴 · ( ( log ‘ 𝐴 ) − 1 ) ) ) − 1 ) ∈ ℂ ) |
23 |
17 21 22
|
sylancl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) − ( 𝐴 · ( ( log ‘ 𝐴 ) − 1 ) ) ) − 1 ) ∈ ℂ ) |
24 |
23
|
abscld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( abs ‘ ( ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) − ( 𝐴 · ( ( log ‘ 𝐴 ) − 1 ) ) ) − 1 ) ) ∈ ℝ ) |
25 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
26 |
25
|
oveq2i |
⊢ ( ( abs ‘ ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) − ( 𝐴 · ( ( log ‘ 𝐴 ) − 1 ) ) ) ) − ( abs ‘ 1 ) ) = ( ( abs ‘ ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) − ( 𝐴 · ( ( log ‘ 𝐴 ) − 1 ) ) ) ) − 1 ) |
27 |
|
abs2dif |
⊢ ( ( ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) − ( 𝐴 · ( ( log ‘ 𝐴 ) − 1 ) ) ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( abs ‘ ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) − ( 𝐴 · ( ( log ‘ 𝐴 ) − 1 ) ) ) ) − ( abs ‘ 1 ) ) ≤ ( abs ‘ ( ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) − ( 𝐴 · ( ( log ‘ 𝐴 ) − 1 ) ) ) − 1 ) ) ) |
28 |
17 21 27
|
sylancl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ( abs ‘ ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) − ( 𝐴 · ( ( log ‘ 𝐴 ) − 1 ) ) ) ) − ( abs ‘ 1 ) ) ≤ ( abs ‘ ( ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) − ( 𝐴 · ( ( log ‘ 𝐴 ) − 1 ) ) ) − 1 ) ) ) |
29 |
26 28
|
eqbrtrrid |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ( abs ‘ ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) − ( 𝐴 · ( ( log ‘ 𝐴 ) − 1 ) ) ) ) − 1 ) ≤ ( abs ‘ ( ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) − ( 𝐴 · ( ( log ‘ 𝐴 ) − 1 ) ) ) − 1 ) ) ) |
30 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( ⌊ ‘ 𝑥 ) = ( ⌊ ‘ 𝐴 ) ) |
31 |
30
|
oveq2d |
⊢ ( 𝑥 = 𝐴 → ( 1 ... ( ⌊ ‘ 𝑥 ) ) = ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) |
32 |
31
|
sumeq1d |
⊢ ( 𝑥 = 𝐴 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( log ‘ 𝑛 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( log ‘ 𝑛 ) ) |
33 |
|
id |
⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) |
34 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( log ‘ 𝑥 ) = ( log ‘ 𝐴 ) ) |
35 |
34
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( ( log ‘ 𝑥 ) − 1 ) = ( ( log ‘ 𝐴 ) − 1 ) ) |
36 |
33 35
|
oveq12d |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 · ( ( log ‘ 𝑥 ) − 1 ) ) = ( 𝐴 · ( ( log ‘ 𝐴 ) − 1 ) ) ) |
37 |
32 36
|
oveq12d |
⊢ ( 𝑥 = 𝐴 → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( log ‘ 𝑛 ) − ( 𝑥 · ( ( log ‘ 𝑥 ) − 1 ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( log ‘ 𝑛 ) − ( 𝐴 · ( ( log ‘ 𝐴 ) − 1 ) ) ) ) |
38 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( log ‘ 𝑛 ) − ( 𝑥 · ( ( log ‘ 𝑥 ) − 1 ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( log ‘ 𝑛 ) − ( 𝑥 · ( ( log ‘ 𝑥 ) − 1 ) ) ) ) |
39 |
|
ovex |
⊢ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( log ‘ 𝑛 ) − ( 𝑥 · ( ( log ‘ 𝑥 ) − 1 ) ) ) ∈ V |
40 |
37 38 39
|
fvmpt3i |
⊢ ( 𝐴 ∈ ℝ+ → ( ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( log ‘ 𝑛 ) − ( 𝑥 · ( ( log ‘ 𝑥 ) − 1 ) ) ) ) ‘ 𝐴 ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( log ‘ 𝑛 ) − ( 𝐴 · ( ( log ‘ 𝐴 ) − 1 ) ) ) ) |
41 |
40
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( log ‘ 𝑛 ) − ( 𝑥 · ( ( log ‘ 𝑥 ) − 1 ) ) ) ) ‘ 𝐴 ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( log ‘ 𝑛 ) − ( 𝐴 · ( ( log ‘ 𝐴 ) − 1 ) ) ) ) |
42 |
|
logfac |
⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ℕ0 → ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( log ‘ 𝑛 ) ) |
43 |
4 42
|
syl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( log ‘ 𝑛 ) ) |
44 |
43
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) − ( 𝐴 · ( ( log ‘ 𝐴 ) − 1 ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( log ‘ 𝑛 ) − ( 𝐴 · ( ( log ‘ 𝐴 ) − 1 ) ) ) ) |
45 |
41 44
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( log ‘ 𝑛 ) − ( 𝑥 · ( ( log ‘ 𝑥 ) − 1 ) ) ) ) ‘ 𝐴 ) = ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) − ( 𝐴 · ( ( log ‘ 𝐴 ) − 1 ) ) ) ) |
46 |
|
1rp |
⊢ 1 ∈ ℝ+ |
47 |
|
fveq2 |
⊢ ( 𝑥 = 1 → ( ⌊ ‘ 𝑥 ) = ( ⌊ ‘ 1 ) ) |
48 |
|
1z |
⊢ 1 ∈ ℤ |
49 |
|
flid |
⊢ ( 1 ∈ ℤ → ( ⌊ ‘ 1 ) = 1 ) |
50 |
48 49
|
ax-mp |
⊢ ( ⌊ ‘ 1 ) = 1 |
51 |
47 50
|
eqtrdi |
⊢ ( 𝑥 = 1 → ( ⌊ ‘ 𝑥 ) = 1 ) |
52 |
51
|
oveq2d |
⊢ ( 𝑥 = 1 → ( 1 ... ( ⌊ ‘ 𝑥 ) ) = ( 1 ... 1 ) ) |
53 |
52
|
sumeq1d |
⊢ ( 𝑥 = 1 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( log ‘ 𝑛 ) = Σ 𝑛 ∈ ( 1 ... 1 ) ( log ‘ 𝑛 ) ) |
54 |
|
0cn |
⊢ 0 ∈ ℂ |
55 |
|
fveq2 |
⊢ ( 𝑛 = 1 → ( log ‘ 𝑛 ) = ( log ‘ 1 ) ) |
56 |
|
log1 |
⊢ ( log ‘ 1 ) = 0 |
57 |
55 56
|
eqtrdi |
⊢ ( 𝑛 = 1 → ( log ‘ 𝑛 ) = 0 ) |
58 |
57
|
fsum1 |
⊢ ( ( 1 ∈ ℤ ∧ 0 ∈ ℂ ) → Σ 𝑛 ∈ ( 1 ... 1 ) ( log ‘ 𝑛 ) = 0 ) |
59 |
48 54 58
|
mp2an |
⊢ Σ 𝑛 ∈ ( 1 ... 1 ) ( log ‘ 𝑛 ) = 0 |
60 |
53 59
|
eqtrdi |
⊢ ( 𝑥 = 1 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( log ‘ 𝑛 ) = 0 ) |
61 |
|
id |
⊢ ( 𝑥 = 1 → 𝑥 = 1 ) |
62 |
|
fveq2 |
⊢ ( 𝑥 = 1 → ( log ‘ 𝑥 ) = ( log ‘ 1 ) ) |
63 |
62 56
|
eqtrdi |
⊢ ( 𝑥 = 1 → ( log ‘ 𝑥 ) = 0 ) |
64 |
63
|
oveq1d |
⊢ ( 𝑥 = 1 → ( ( log ‘ 𝑥 ) − 1 ) = ( 0 − 1 ) ) |
65 |
61 64
|
oveq12d |
⊢ ( 𝑥 = 1 → ( 𝑥 · ( ( log ‘ 𝑥 ) − 1 ) ) = ( 1 · ( 0 − 1 ) ) ) |
66 |
54 21
|
subcli |
⊢ ( 0 − 1 ) ∈ ℂ |
67 |
66
|
mulid2i |
⊢ ( 1 · ( 0 − 1 ) ) = ( 0 − 1 ) |
68 |
65 67
|
eqtrdi |
⊢ ( 𝑥 = 1 → ( 𝑥 · ( ( log ‘ 𝑥 ) − 1 ) ) = ( 0 − 1 ) ) |
69 |
60 68
|
oveq12d |
⊢ ( 𝑥 = 1 → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( log ‘ 𝑛 ) − ( 𝑥 · ( ( log ‘ 𝑥 ) − 1 ) ) ) = ( 0 − ( 0 − 1 ) ) ) |
70 |
|
nncan |
⊢ ( ( 0 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 0 − ( 0 − 1 ) ) = 1 ) |
71 |
54 21 70
|
mp2an |
⊢ ( 0 − ( 0 − 1 ) ) = 1 |
72 |
69 71
|
eqtrdi |
⊢ ( 𝑥 = 1 → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( log ‘ 𝑛 ) − ( 𝑥 · ( ( log ‘ 𝑥 ) − 1 ) ) ) = 1 ) |
73 |
72 38 39
|
fvmpt3i |
⊢ ( 1 ∈ ℝ+ → ( ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( log ‘ 𝑛 ) − ( 𝑥 · ( ( log ‘ 𝑥 ) − 1 ) ) ) ) ‘ 1 ) = 1 ) |
74 |
46 73
|
mp1i |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( log ‘ 𝑛 ) − ( 𝑥 · ( ( log ‘ 𝑥 ) − 1 ) ) ) ) ‘ 1 ) = 1 ) |
75 |
45 74
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ( ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( log ‘ 𝑛 ) − ( 𝑥 · ( ( log ‘ 𝑥 ) − 1 ) ) ) ) ‘ 𝐴 ) − ( ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( log ‘ 𝑛 ) − ( 𝑥 · ( ( log ‘ 𝑥 ) − 1 ) ) ) ) ‘ 1 ) ) = ( ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) − ( 𝐴 · ( ( log ‘ 𝐴 ) − 1 ) ) ) − 1 ) ) |
76 |
75
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( abs ‘ ( ( ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( log ‘ 𝑛 ) − ( 𝑥 · ( ( log ‘ 𝑥 ) − 1 ) ) ) ) ‘ 𝐴 ) − ( ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( log ‘ 𝑛 ) − ( 𝑥 · ( ( log ‘ 𝑥 ) − 1 ) ) ) ) ‘ 1 ) ) ) = ( abs ‘ ( ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) − ( 𝐴 · ( ( log ‘ 𝐴 ) − 1 ) ) ) − 1 ) ) ) |
77 |
|
ioorp |
⊢ ( 0 (,) +∞ ) = ℝ+ |
78 |
77
|
eqcomi |
⊢ ℝ+ = ( 0 (,) +∞ ) |
79 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
80 |
48
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → 1 ∈ ℤ ) |
81 |
|
1re |
⊢ 1 ∈ ℝ |
82 |
81
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → 1 ∈ ℝ ) |
83 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
84 |
83
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → +∞ ∈ ℝ* ) |
85 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
86 |
81 85
|
nn0addge1i |
⊢ 1 ≤ ( 1 + 1 ) |
87 |
86
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → 1 ≤ ( 1 + 1 ) ) |
88 |
|
0red |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → 0 ∈ ℝ ) |
89 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
90 |
89
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ ) |
91 |
|
relogcl |
⊢ ( 𝑥 ∈ ℝ+ → ( log ‘ 𝑥 ) ∈ ℝ ) |
92 |
91
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → ( log ‘ 𝑥 ) ∈ ℝ ) |
93 |
|
peano2rem |
⊢ ( ( log ‘ 𝑥 ) ∈ ℝ → ( ( log ‘ 𝑥 ) − 1 ) ∈ ℝ ) |
94 |
92 93
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → ( ( log ‘ 𝑥 ) − 1 ) ∈ ℝ ) |
95 |
90 94
|
remulcld |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 · ( ( log ‘ 𝑥 ) − 1 ) ) ∈ ℝ ) |
96 |
|
nnrp |
⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℝ+ ) |
97 |
96 92
|
sylan2 |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → ( log ‘ 𝑥 ) ∈ ℝ ) |
98 |
|
advlog |
⊢ ( ℝ D ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 · ( ( log ‘ 𝑥 ) − 1 ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) |
99 |
98
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ℝ D ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 · ( ( log ‘ 𝑥 ) − 1 ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ) |
100 |
|
fveq2 |
⊢ ( 𝑥 = 𝑛 → ( log ‘ 𝑥 ) = ( log ‘ 𝑛 ) ) |
101 |
|
simp32 |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞ ) ) → 𝑥 ≤ 𝑛 ) |
102 |
|
logleb |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) → ( 𝑥 ≤ 𝑛 ↔ ( log ‘ 𝑥 ) ≤ ( log ‘ 𝑛 ) ) ) |
103 |
102
|
3ad2ant2 |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞ ) ) → ( 𝑥 ≤ 𝑛 ↔ ( log ‘ 𝑥 ) ≤ ( log ‘ 𝑛 ) ) ) |
104 |
101 103
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞ ) ) → ( log ‘ 𝑥 ) ≤ ( log ‘ 𝑛 ) ) |
105 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 1 ≤ 𝑥 ) |
106 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 𝑥 ∈ ℝ+ ) |
107 |
|
logleb |
⊢ ( ( 1 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) → ( 1 ≤ 𝑥 ↔ ( log ‘ 1 ) ≤ ( log ‘ 𝑥 ) ) ) |
108 |
46 106 107
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( 1 ≤ 𝑥 ↔ ( log ‘ 1 ) ≤ ( log ‘ 𝑥 ) ) ) |
109 |
105 108
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( log ‘ 1 ) ≤ ( log ‘ 𝑥 ) ) |
110 |
56 109
|
eqbrtrrid |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 0 ≤ ( log ‘ 𝑥 ) ) |
111 |
46
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → 1 ∈ ℝ+ ) |
112 |
|
1le1 |
⊢ 1 ≤ 1 |
113 |
112
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → 1 ≤ 1 ) |
114 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → 1 ≤ 𝐴 ) |
115 |
10
|
rexrd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → 𝐴 ∈ ℝ* ) |
116 |
|
pnfge |
⊢ ( 𝐴 ∈ ℝ* → 𝐴 ≤ +∞ ) |
117 |
115 116
|
syl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → 𝐴 ≤ +∞ ) |
118 |
78 79 80 82 84 87 88 95 92 97 99 100 104 38 110 111 1 113 114 117 34
|
dvfsum2 |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( abs ‘ ( ( ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( log ‘ 𝑛 ) − ( 𝑥 · ( ( log ‘ 𝑥 ) − 1 ) ) ) ) ‘ 𝐴 ) − ( ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( log ‘ 𝑛 ) − ( 𝑥 · ( ( log ‘ 𝑥 ) − 1 ) ) ) ) ‘ 1 ) ) ) ≤ ( log ‘ 𝐴 ) ) |
119 |
76 118
|
eqbrtrrd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( abs ‘ ( ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) − ( 𝐴 · ( ( log ‘ 𝐴 ) − 1 ) ) ) − 1 ) ) ≤ ( log ‘ 𝐴 ) ) |
120 |
20 24 12 29 119
|
letrd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ( abs ‘ ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) − ( 𝐴 · ( ( log ‘ 𝐴 ) − 1 ) ) ) ) − 1 ) ≤ ( log ‘ 𝐴 ) ) |
121 |
18 82 12
|
lesubaddd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ( ( abs ‘ ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) − ( 𝐴 · ( ( log ‘ 𝐴 ) − 1 ) ) ) ) − 1 ) ≤ ( log ‘ 𝐴 ) ↔ ( abs ‘ ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) − ( 𝐴 · ( ( log ‘ 𝐴 ) − 1 ) ) ) ) ≤ ( ( log ‘ 𝐴 ) + 1 ) ) ) |
122 |
120 121
|
mpbid |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( abs ‘ ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) − ( 𝐴 · ( ( log ‘ 𝐴 ) − 1 ) ) ) ) ≤ ( ( log ‘ 𝐴 ) + 1 ) ) |