| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdh.q | ⊢ 𝑄  =  ( 0g ‘ 𝐶 ) | 
						
							| 2 |  | mapdh.i | ⊢ 𝐼  =  ( 𝑥  ∈  V  ↦  if ( ( 2nd  ‘ 𝑥 )  =   0  ,  𝑄 ,  ( ℩ ℎ  ∈  𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd  ‘ 𝑥 ) } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st  ‘ ( 1st  ‘ 𝑥 ) )  −  ( 2nd  ‘ 𝑥 ) ) } ) )  =  ( 𝐽 ‘ { ( ( 2nd  ‘ ( 1st  ‘ 𝑥 ) ) 𝑅 ℎ ) } ) ) ) ) ) | 
						
							| 3 |  | mapdh.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 4 |  | mapdh.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | mapdh.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 |  | mapdh.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 7 |  | mapdh.s | ⊢  −   =  ( -g ‘ 𝑈 ) | 
						
							| 8 |  | mapdhc.o | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 9 |  | mapdh.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 10 |  | mapdh.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 11 |  | mapdh.d | ⊢ 𝐷  =  ( Base ‘ 𝐶 ) | 
						
							| 12 |  | mapdh.r | ⊢ 𝑅  =  ( -g ‘ 𝐶 ) | 
						
							| 13 |  | mapdh.j | ⊢ 𝐽  =  ( LSpan ‘ 𝐶 ) | 
						
							| 14 |  | mapdh.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 15 |  | mapdhc.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐷 ) | 
						
							| 16 |  | mapdh.mn | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) )  =  ( 𝐽 ‘ { 𝐹 } ) ) | 
						
							| 17 |  | mapdhcl.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 18 |  | mapdh.p | ⊢  +   =  ( +g ‘ 𝑈 ) | 
						
							| 19 |  | mapdh.a | ⊢  ✚   =  ( +g ‘ 𝐶 ) | 
						
							| 20 |  | mapdh6d.xn | ⊢ ( 𝜑  →  ¬  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑍 } ) ) | 
						
							| 21 |  | mapdh6d.yz | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 } )  =  ( 𝑁 ‘ { 𝑍 } ) ) | 
						
							| 22 |  | mapdh6d.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 23 |  | mapdh6d.z | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 24 |  | mapdh6d.w | ⊢ ( 𝜑  →  𝑤  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 25 |  | mapdh6d.wn | ⊢ ( 𝜑  →  ¬  𝑤  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 26 | 3 10 14 | lcdlmod | ⊢ ( 𝜑  →  𝐶  ∈  LMod ) | 
						
							| 27 | 24 | eldifad | ⊢ ( 𝜑  →  𝑤  ∈  𝑉 ) | 
						
							| 28 | 3 5 14 | dvhlvec | ⊢ ( 𝜑  →  𝑈  ∈  LVec ) | 
						
							| 29 | 17 | eldifad | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 30 | 22 | eldifad | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 31 | 6 9 28 27 29 30 25 | lspindpi | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑤 } )  ≠  ( 𝑁 ‘ { 𝑋 } )  ∧  ( 𝑁 ‘ { 𝑤 } )  ≠  ( 𝑁 ‘ { 𝑌 } ) ) ) | 
						
							| 32 | 31 | simpld | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑤 } )  ≠  ( 𝑁 ‘ { 𝑋 } ) ) | 
						
							| 33 | 32 | necomd | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { 𝑤 } ) ) | 
						
							| 34 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 27 33 | mapdhcl | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑤 〉 )  ∈  𝐷 ) | 
						
							| 35 | 11 19 1 | lmod0vrid | ⊢ ( ( 𝐶  ∈  LMod  ∧  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑤 〉 )  ∈  𝐷 )  →  ( ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑤 〉 )  ✚  𝑄 )  =  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑤 〉 ) ) | 
						
							| 36 | 26 34 35 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑤 〉 )  ✚  𝑄 )  =  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑤 〉 ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑌  +  𝑍 )  =   0  )  →  ( ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑤 〉 )  ✚  𝑄 )  =  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑤 〉 ) ) | 
						
							| 38 |  | oteq3 | ⊢ ( ( 𝑌  +  𝑍 )  =   0   →  〈 𝑋 ,  𝐹 ,  ( 𝑌  +  𝑍 ) 〉  =  〈 𝑋 ,  𝐹 ,   0  〉 ) | 
						
							| 39 | 38 | fveq2d | ⊢ ( ( 𝑌  +  𝑍 )  =   0   →  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  ( 𝑌  +  𝑍 ) 〉 )  =  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,   0  〉 ) ) | 
						
							| 40 | 1 2 8 17 15 | mapdhval0 | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,   0  〉 )  =  𝑄 ) | 
						
							| 41 | 39 40 | sylan9eqr | ⊢ ( ( 𝜑  ∧  ( 𝑌  +  𝑍 )  =   0  )  →  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  ( 𝑌  +  𝑍 ) 〉 )  =  𝑄 ) | 
						
							| 42 | 41 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑌  +  𝑍 )  =   0  )  →  ( ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑤 〉 )  ✚  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  ( 𝑌  +  𝑍 ) 〉 ) )  =  ( ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑤 〉 )  ✚  𝑄 ) ) | 
						
							| 43 |  | oveq2 | ⊢ ( ( 𝑌  +  𝑍 )  =   0   →  ( 𝑤  +  ( 𝑌  +  𝑍 ) )  =  ( 𝑤  +   0  ) ) | 
						
							| 44 | 3 5 14 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 45 | 6 18 8 | lmod0vrid | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑤  ∈  𝑉 )  →  ( 𝑤  +   0  )  =  𝑤 ) | 
						
							| 46 | 44 27 45 | syl2anc | ⊢ ( 𝜑  →  ( 𝑤  +   0  )  =  𝑤 ) | 
						
							| 47 | 43 46 | sylan9eqr | ⊢ ( ( 𝜑  ∧  ( 𝑌  +  𝑍 )  =   0  )  →  ( 𝑤  +  ( 𝑌  +  𝑍 ) )  =  𝑤 ) | 
						
							| 48 | 47 | oteq3d | ⊢ ( ( 𝜑  ∧  ( 𝑌  +  𝑍 )  =   0  )  →  〈 𝑋 ,  𝐹 ,  ( 𝑤  +  ( 𝑌  +  𝑍 ) ) 〉  =  〈 𝑋 ,  𝐹 ,  𝑤 〉 ) | 
						
							| 49 | 48 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑌  +  𝑍 )  =   0  )  →  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  ( 𝑤  +  ( 𝑌  +  𝑍 ) ) 〉 )  =  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑤 〉 ) ) | 
						
							| 50 | 37 42 49 | 3eqtr4rd | ⊢ ( ( 𝜑  ∧  ( 𝑌  +  𝑍 )  =   0  )  →  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  ( 𝑤  +  ( 𝑌  +  𝑍 ) ) 〉 )  =  ( ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑤 〉 )  ✚  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  ( 𝑌  +  𝑍 ) 〉 ) ) ) | 
						
							| 51 | 14 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑌  +  𝑍 )  ≠   0  )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 52 | 15 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑌  +  𝑍 )  ≠   0  )  →  𝐹  ∈  𝐷 ) | 
						
							| 53 | 16 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑌  +  𝑍 )  ≠   0  )  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) )  =  ( 𝐽 ‘ { 𝐹 } ) ) | 
						
							| 54 | 17 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑌  +  𝑍 )  ≠   0  )  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 55 | 24 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑌  +  𝑍 )  ≠   0  )  →  𝑤  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 56 | 23 | eldifad | ⊢ ( 𝜑  →  𝑍  ∈  𝑉 ) | 
						
							| 57 | 6 18 | lmodvacl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑉 )  →  ( 𝑌  +  𝑍 )  ∈  𝑉 ) | 
						
							| 58 | 44 30 56 57 | syl3anc | ⊢ ( 𝜑  →  ( 𝑌  +  𝑍 )  ∈  𝑉 ) | 
						
							| 59 | 58 | anim1i | ⊢ ( ( 𝜑  ∧  ( 𝑌  +  𝑍 )  ≠   0  )  →  ( ( 𝑌  +  𝑍 )  ∈  𝑉  ∧  ( 𝑌  +  𝑍 )  ≠   0  ) ) | 
						
							| 60 |  | eldifsn | ⊢ ( ( 𝑌  +  𝑍 )  ∈  ( 𝑉  ∖  {  0  } )  ↔  ( ( 𝑌  +  𝑍 )  ∈  𝑉  ∧  ( 𝑌  +  𝑍 )  ≠   0  ) ) | 
						
							| 61 | 59 60 | sylibr | ⊢ ( ( 𝜑  ∧  ( 𝑌  +  𝑍 )  ≠   0  )  →  ( 𝑌  +  𝑍 )  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 62 | 6 9 28 29 30 56 20 | lspindpi | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { 𝑌 } )  ∧  ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { 𝑍 } ) ) ) | 
						
							| 63 | 62 | simpld | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 64 | 6 18 8 9 28 17 22 23 24 21 63 25 | mapdindp1 | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { ( 𝑌  +  𝑍 ) } ) ) | 
						
							| 65 | 6 18 8 9 28 17 22 23 24 21 63 25 | mapdindp2 | ⊢ ( 𝜑  →  ¬  𝑤  ∈  ( 𝑁 ‘ { 𝑋 ,  ( 𝑌  +  𝑍 ) } ) ) | 
						
							| 66 | 6 8 9 28 17 58 27 64 65 | lspindp1 | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑤 } )  ≠  ( 𝑁 ‘ { ( 𝑌  +  𝑍 ) } )  ∧  ¬  𝑋  ∈  ( 𝑁 ‘ { 𝑤 ,  ( 𝑌  +  𝑍 ) } ) ) ) | 
						
							| 67 | 66 | simprd | ⊢ ( 𝜑  →  ¬  𝑋  ∈  ( 𝑁 ‘ { 𝑤 ,  ( 𝑌  +  𝑍 ) } ) ) | 
						
							| 68 | 67 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑌  +  𝑍 )  ≠   0  )  →  ¬  𝑋  ∈  ( 𝑁 ‘ { 𝑤 ,  ( 𝑌  +  𝑍 ) } ) ) | 
						
							| 69 | 31 | simprd | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑤 } )  ≠  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 70 | 6 8 9 28 24 30 69 | lspsnne1 | ⊢ ( 𝜑  →  ¬  𝑤  ∈  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 71 |  | eqid | ⊢ ( LSSum ‘ 𝑈 )  =  ( LSSum ‘ 𝑈 ) | 
						
							| 72 | 6 9 71 44 30 56 | lsmpr | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 ,  𝑍 } )  =  ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑍 } ) ) ) | 
						
							| 73 | 21 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑌 } ) )  =  ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑍 } ) ) ) | 
						
							| 74 |  | eqid | ⊢ ( LSubSp ‘ 𝑈 )  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 75 | 6 74 9 | lspsncl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑌  ∈  𝑉 )  →  ( 𝑁 ‘ { 𝑌 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 76 | 44 30 75 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 77 | 74 | lsssubg | ⊢ ( ( 𝑈  ∈  LMod  ∧  ( 𝑁 ‘ { 𝑌 } )  ∈  ( LSubSp ‘ 𝑈 ) )  →  ( 𝑁 ‘ { 𝑌 } )  ∈  ( SubGrp ‘ 𝑈 ) ) | 
						
							| 78 | 44 76 77 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 } )  ∈  ( SubGrp ‘ 𝑈 ) ) | 
						
							| 79 | 71 | lsmidm | ⊢ ( ( 𝑁 ‘ { 𝑌 } )  ∈  ( SubGrp ‘ 𝑈 )  →  ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 80 | 78 79 | syl | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 81 | 72 73 80 | 3eqtr2d | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 ,  𝑍 } )  =  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 82 | 70 81 | neleqtrrd | ⊢ ( 𝜑  →  ¬  𝑤  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑍 } ) ) | 
						
							| 83 | 6 18 9 44 30 56 27 82 | lspindp4 | ⊢ ( 𝜑  →  ¬  𝑤  ∈  ( 𝑁 ‘ { 𝑌 ,  ( 𝑌  +  𝑍 ) } ) ) | 
						
							| 84 | 6 9 28 27 30 58 83 | lspindpi | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑤 } )  ≠  ( 𝑁 ‘ { 𝑌 } )  ∧  ( 𝑁 ‘ { 𝑤 } )  ≠  ( 𝑁 ‘ { ( 𝑌  +  𝑍 ) } ) ) ) | 
						
							| 85 | 84 | simprd | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑤 } )  ≠  ( 𝑁 ‘ { ( 𝑌  +  𝑍 ) } ) ) | 
						
							| 86 | 85 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑌  +  𝑍 )  ≠   0  )  →  ( 𝑁 ‘ { 𝑤 } )  ≠  ( 𝑁 ‘ { ( 𝑌  +  𝑍 ) } ) ) | 
						
							| 87 |  | eqidd | ⊢ ( ( 𝜑  ∧  ( 𝑌  +  𝑍 )  ≠   0  )  →  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑤 〉 )  =  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑤 〉 ) ) | 
						
							| 88 |  | eqidd | ⊢ ( ( 𝜑  ∧  ( 𝑌  +  𝑍 )  ≠   0  )  →  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  ( 𝑌  +  𝑍 ) 〉 )  =  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  ( 𝑌  +  𝑍 ) 〉 ) ) | 
						
							| 89 | 1 2 3 4 5 6 7 8 9 10 11 12 13 51 52 53 54 18 19 55 61 68 86 87 88 | mapdh6aN | ⊢ ( ( 𝜑  ∧  ( 𝑌  +  𝑍 )  ≠   0  )  →  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  ( 𝑤  +  ( 𝑌  +  𝑍 ) ) 〉 )  =  ( ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑤 〉 )  ✚  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  ( 𝑌  +  𝑍 ) 〉 ) ) ) | 
						
							| 90 | 50 89 | pm2.61dane | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  ( 𝑤  +  ( 𝑌  +  𝑍 ) ) 〉 )  =  ( ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑤 〉 )  ✚  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  ( 𝑌  +  𝑍 ) 〉 ) ) ) |