| Step |
Hyp |
Ref |
Expression |
| 1 |
|
monotoddzzfi.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 2 |
|
monotoddzzfi.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → ( 𝐹 ‘ - 𝑥 ) = - ( 𝐹 ‘ 𝑥 ) ) |
| 3 |
|
monotoddzzfi.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑥 < 𝑦 → ( 𝐹 ‘ 𝑥 ) < ( 𝐹 ‘ 𝑦 ) ) ) |
| 4 |
|
fveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) |
| 5 |
|
fveq2 |
⊢ ( 𝑎 = 𝐴 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 6 |
|
fveq2 |
⊢ ( 𝑎 = 𝐵 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝐵 ) ) |
| 7 |
|
zssre |
⊢ ℤ ⊆ ℝ |
| 8 |
|
eleq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 ∈ ℤ ↔ 𝑎 ∈ ℤ ) ) |
| 9 |
8
|
anbi2d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) ↔ ( 𝜑 ∧ 𝑎 ∈ ℤ ) ) ) |
| 10 |
|
fveq2 |
⊢ ( 𝑥 = 𝑎 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑎 ) ) |
| 11 |
10
|
eleq1d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝑎 ) ∈ ℝ ) ) |
| 12 |
9 11
|
imbi12d |
⊢ ( 𝑥 = 𝑎 → ( ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) ↔ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → ( 𝐹 ‘ 𝑎 ) ∈ ℝ ) ) ) |
| 13 |
12 1
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → ( 𝐹 ‘ 𝑎 ) ∈ ℝ ) |
| 14 |
|
elznn |
⊢ ( 𝑎 ∈ ℤ ↔ ( 𝑎 ∈ ℝ ∧ ( 𝑎 ∈ ℕ ∨ - 𝑎 ∈ ℕ0 ) ) ) |
| 15 |
14
|
simprbi |
⊢ ( 𝑎 ∈ ℤ → ( 𝑎 ∈ ℕ ∨ - 𝑎 ∈ ℕ0 ) ) |
| 16 |
|
elznn |
⊢ ( 𝑏 ∈ ℤ ↔ ( 𝑏 ∈ ℝ ∧ ( 𝑏 ∈ ℕ ∨ - 𝑏 ∈ ℕ0 ) ) ) |
| 17 |
16
|
simprbi |
⊢ ( 𝑏 ∈ ℤ → ( 𝑏 ∈ ℕ ∨ - 𝑏 ∈ ℕ0 ) ) |
| 18 |
15 17
|
anim12i |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( ( 𝑎 ∈ ℕ ∨ - 𝑎 ∈ ℕ0 ) ∧ ( 𝑏 ∈ ℕ ∨ - 𝑏 ∈ ℕ0 ) ) ) |
| 19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝑎 ∈ ℕ ∨ - 𝑎 ∈ ℕ0 ) ∧ ( 𝑏 ∈ ℕ ∨ - 𝑏 ∈ ℕ0 ) ) ) |
| 20 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ) ) → 𝜑 ) |
| 21 |
|
nnnn0 |
⊢ ( 𝑎 ∈ ℕ → 𝑎 ∈ ℕ0 ) |
| 22 |
21
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ) ) → 𝑎 ∈ ℕ0 ) |
| 23 |
|
nnnn0 |
⊢ ( 𝑏 ∈ ℕ → 𝑏 ∈ ℕ0 ) |
| 24 |
23
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ) ) → 𝑏 ∈ ℕ0 ) |
| 25 |
|
vex |
⊢ 𝑎 ∈ V |
| 26 |
|
vex |
⊢ 𝑏 ∈ V |
| 27 |
|
simpl |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → 𝑥 = 𝑎 ) |
| 28 |
27
|
eleq1d |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( 𝑥 ∈ ℕ0 ↔ 𝑎 ∈ ℕ0 ) ) |
| 29 |
|
simpr |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → 𝑦 = 𝑏 ) |
| 30 |
29
|
eleq1d |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( 𝑦 ∈ ℕ0 ↔ 𝑏 ∈ ℕ0 ) ) |
| 31 |
28 30
|
3anbi23d |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ↔ ( 𝜑 ∧ 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ) |
| 32 |
|
breq12 |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( 𝑥 < 𝑦 ↔ 𝑎 < 𝑏 ) ) |
| 33 |
|
fveq2 |
⊢ ( 𝑦 = 𝑏 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑏 ) ) |
| 34 |
10 33
|
breqan12d |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( ( 𝐹 ‘ 𝑥 ) < ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ) ) |
| 35 |
32 34
|
imbi12d |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( ( 𝑥 < 𝑦 → ( 𝐹 ‘ 𝑥 ) < ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑎 < 𝑏 → ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 36 |
31 35
|
imbi12d |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑥 < 𝑦 → ( 𝐹 ‘ 𝑥 ) < ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) → ( 𝑎 < 𝑏 → ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ) ) ) ) |
| 37 |
25 26 36 3
|
vtocl2 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) → ( 𝑎 < 𝑏 → ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ) ) |
| 38 |
20 22 24 37
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ) ) → ( 𝑎 < 𝑏 → ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ) ) |
| 39 |
38
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ) → ( 𝑎 < 𝑏 → ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 40 |
13
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝐹 ‘ 𝑎 ) ∈ ℝ ) |
| 41 |
40
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) ) → ( 𝐹 ‘ 𝑎 ) ∈ ℝ ) |
| 42 |
|
0red |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) ) → 0 ∈ ℝ ) |
| 43 |
|
eleq1 |
⊢ ( 𝑥 = 𝑏 → ( 𝑥 ∈ ℤ ↔ 𝑏 ∈ ℤ ) ) |
| 44 |
43
|
anbi2d |
⊢ ( 𝑥 = 𝑏 → ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) ↔ ( 𝜑 ∧ 𝑏 ∈ ℤ ) ) ) |
| 45 |
|
fveq2 |
⊢ ( 𝑥 = 𝑏 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑏 ) ) |
| 46 |
45
|
eleq1d |
⊢ ( 𝑥 = 𝑏 → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝑏 ) ∈ ℝ ) ) |
| 47 |
44 46
|
imbi12d |
⊢ ( 𝑥 = 𝑏 → ( ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) ↔ ( ( 𝜑 ∧ 𝑏 ∈ ℤ ) → ( 𝐹 ‘ 𝑏 ) ∈ ℝ ) ) ) |
| 48 |
47 1
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ℤ ) → ( 𝐹 ‘ 𝑏 ) ∈ ℝ ) |
| 49 |
48
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝐹 ‘ 𝑏 ) ∈ ℝ ) |
| 50 |
49
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) ) → ( 𝐹 ‘ 𝑏 ) ∈ ℝ ) |
| 51 |
|
0red |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) ) ∧ - 𝑎 ∈ ℕ ) → 0 ∈ ℝ ) |
| 52 |
|
znegcl |
⊢ ( 𝑎 ∈ ℤ → - 𝑎 ∈ ℤ ) |
| 53 |
52
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → - 𝑎 ∈ ℤ ) |
| 54 |
|
negex |
⊢ - 𝑎 ∈ V |
| 55 |
|
eleq1 |
⊢ ( 𝑥 = - 𝑎 → ( 𝑥 ∈ ℤ ↔ - 𝑎 ∈ ℤ ) ) |
| 56 |
55
|
anbi2d |
⊢ ( 𝑥 = - 𝑎 → ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) ↔ ( 𝜑 ∧ - 𝑎 ∈ ℤ ) ) ) |
| 57 |
|
fveq2 |
⊢ ( 𝑥 = - 𝑎 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ - 𝑎 ) ) |
| 58 |
57
|
eleq1d |
⊢ ( 𝑥 = - 𝑎 → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ↔ ( 𝐹 ‘ - 𝑎 ) ∈ ℝ ) ) |
| 59 |
56 58
|
imbi12d |
⊢ ( 𝑥 = - 𝑎 → ( ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) ↔ ( ( 𝜑 ∧ - 𝑎 ∈ ℤ ) → ( 𝐹 ‘ - 𝑎 ) ∈ ℝ ) ) ) |
| 60 |
54 59 1
|
vtocl |
⊢ ( ( 𝜑 ∧ - 𝑎 ∈ ℤ ) → ( 𝐹 ‘ - 𝑎 ) ∈ ℝ ) |
| 61 |
53 60
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝐹 ‘ - 𝑎 ) ∈ ℝ ) |
| 62 |
61
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) ) ∧ - 𝑎 ∈ ℕ ) → ( 𝐹 ‘ - 𝑎 ) ∈ ℝ ) |
| 63 |
|
0z |
⊢ 0 ∈ ℤ |
| 64 |
|
c0ex |
⊢ 0 ∈ V |
| 65 |
|
eleq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ∈ ℤ ↔ 0 ∈ ℤ ) ) |
| 66 |
65
|
anbi2d |
⊢ ( 𝑥 = 0 → ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) ↔ ( 𝜑 ∧ 0 ∈ ℤ ) ) ) |
| 67 |
|
fveq2 |
⊢ ( 𝑥 = 0 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 0 ) ) |
| 68 |
67
|
eleq1d |
⊢ ( 𝑥 = 0 → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ↔ ( 𝐹 ‘ 0 ) ∈ ℝ ) ) |
| 69 |
66 68
|
imbi12d |
⊢ ( 𝑥 = 0 → ( ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) ↔ ( ( 𝜑 ∧ 0 ∈ ℤ ) → ( 𝐹 ‘ 0 ) ∈ ℝ ) ) ) |
| 70 |
64 69 1
|
vtocl |
⊢ ( ( 𝜑 ∧ 0 ∈ ℤ ) → ( 𝐹 ‘ 0 ) ∈ ℝ ) |
| 71 |
63 70
|
mpan2 |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) ∈ ℝ ) |
| 72 |
71
|
recnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) ∈ ℂ ) |
| 73 |
|
neg0 |
⊢ - 0 = 0 |
| 74 |
73
|
fveq2i |
⊢ ( 𝐹 ‘ - 0 ) = ( 𝐹 ‘ 0 ) |
| 75 |
|
negeq |
⊢ ( 𝑥 = 0 → - 𝑥 = - 0 ) |
| 76 |
75
|
fveq2d |
⊢ ( 𝑥 = 0 → ( 𝐹 ‘ - 𝑥 ) = ( 𝐹 ‘ - 0 ) ) |
| 77 |
67
|
negeqd |
⊢ ( 𝑥 = 0 → - ( 𝐹 ‘ 𝑥 ) = - ( 𝐹 ‘ 0 ) ) |
| 78 |
76 77
|
eqeq12d |
⊢ ( 𝑥 = 0 → ( ( 𝐹 ‘ - 𝑥 ) = - ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ - 0 ) = - ( 𝐹 ‘ 0 ) ) ) |
| 79 |
66 78
|
imbi12d |
⊢ ( 𝑥 = 0 → ( ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → ( 𝐹 ‘ - 𝑥 ) = - ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( 𝜑 ∧ 0 ∈ ℤ ) → ( 𝐹 ‘ - 0 ) = - ( 𝐹 ‘ 0 ) ) ) ) |
| 80 |
64 79 2
|
vtocl |
⊢ ( ( 𝜑 ∧ 0 ∈ ℤ ) → ( 𝐹 ‘ - 0 ) = - ( 𝐹 ‘ 0 ) ) |
| 81 |
63 80
|
mpan2 |
⊢ ( 𝜑 → ( 𝐹 ‘ - 0 ) = - ( 𝐹 ‘ 0 ) ) |
| 82 |
74 81
|
eqtr3id |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = - ( 𝐹 ‘ 0 ) ) |
| 83 |
72 82
|
eqnegad |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = 0 ) |
| 84 |
83
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝐹 ‘ 0 ) = 0 ) |
| 85 |
84
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) ) ∧ - 𝑎 ∈ ℕ ) → ( 𝐹 ‘ 0 ) = 0 ) |
| 86 |
|
nngt0 |
⊢ ( - 𝑎 ∈ ℕ → 0 < - 𝑎 ) |
| 87 |
86
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) ) ∧ - 𝑎 ∈ ℕ ) → 0 < - 𝑎 ) |
| 88 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) ) ∧ - 𝑎 ∈ ℕ ) → 𝜑 ) |
| 89 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 90 |
89
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) ) ∧ - 𝑎 ∈ ℕ ) → 0 ∈ ℕ0 ) |
| 91 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) ) ∧ - 𝑎 ∈ ℕ ) → - 𝑎 ∈ ℕ0 ) |
| 92 |
|
simpl |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = - 𝑎 ) → 𝑥 = 0 ) |
| 93 |
92
|
eleq1d |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = - 𝑎 ) → ( 𝑥 ∈ ℕ0 ↔ 0 ∈ ℕ0 ) ) |
| 94 |
|
simpr |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = - 𝑎 ) → 𝑦 = - 𝑎 ) |
| 95 |
94
|
eleq1d |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = - 𝑎 ) → ( 𝑦 ∈ ℕ0 ↔ - 𝑎 ∈ ℕ0 ) ) |
| 96 |
93 95
|
3anbi23d |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = - 𝑎 ) → ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ↔ ( 𝜑 ∧ 0 ∈ ℕ0 ∧ - 𝑎 ∈ ℕ0 ) ) ) |
| 97 |
|
breq12 |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = - 𝑎 ) → ( 𝑥 < 𝑦 ↔ 0 < - 𝑎 ) ) |
| 98 |
92
|
fveq2d |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = - 𝑎 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 0 ) ) |
| 99 |
94
|
fveq2d |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = - 𝑎 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ - 𝑎 ) ) |
| 100 |
98 99
|
breq12d |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = - 𝑎 ) → ( ( 𝐹 ‘ 𝑥 ) < ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 0 ) < ( 𝐹 ‘ - 𝑎 ) ) ) |
| 101 |
97 100
|
imbi12d |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = - 𝑎 ) → ( ( 𝑥 < 𝑦 → ( 𝐹 ‘ 𝑥 ) < ( 𝐹 ‘ 𝑦 ) ) ↔ ( 0 < - 𝑎 → ( 𝐹 ‘ 0 ) < ( 𝐹 ‘ - 𝑎 ) ) ) ) |
| 102 |
96 101
|
imbi12d |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = - 𝑎 ) → ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑥 < 𝑦 → ( 𝐹 ‘ 𝑥 ) < ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( ( 𝜑 ∧ 0 ∈ ℕ0 ∧ - 𝑎 ∈ ℕ0 ) → ( 0 < - 𝑎 → ( 𝐹 ‘ 0 ) < ( 𝐹 ‘ - 𝑎 ) ) ) ) ) |
| 103 |
64 54 102 3
|
vtocl2 |
⊢ ( ( 𝜑 ∧ 0 ∈ ℕ0 ∧ - 𝑎 ∈ ℕ0 ) → ( 0 < - 𝑎 → ( 𝐹 ‘ 0 ) < ( 𝐹 ‘ - 𝑎 ) ) ) |
| 104 |
88 90 91 103
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) ) ∧ - 𝑎 ∈ ℕ ) → ( 0 < - 𝑎 → ( 𝐹 ‘ 0 ) < ( 𝐹 ‘ - 𝑎 ) ) ) |
| 105 |
87 104
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) ) ∧ - 𝑎 ∈ ℕ ) → ( 𝐹 ‘ 0 ) < ( 𝐹 ‘ - 𝑎 ) ) |
| 106 |
85 105
|
eqbrtrrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) ) ∧ - 𝑎 ∈ ℕ ) → 0 < ( 𝐹 ‘ - 𝑎 ) ) |
| 107 |
51 62 106
|
ltled |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) ) ∧ - 𝑎 ∈ ℕ ) → 0 ≤ ( 𝐹 ‘ - 𝑎 ) ) |
| 108 |
|
0le0 |
⊢ 0 ≤ 0 |
| 109 |
84
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) ) ∧ - 𝑎 = 0 ) → ( 𝐹 ‘ 0 ) = 0 ) |
| 110 |
108 109
|
breqtrrid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) ) ∧ - 𝑎 = 0 ) → 0 ≤ ( 𝐹 ‘ 0 ) ) |
| 111 |
|
fveq2 |
⊢ ( - 𝑎 = 0 → ( 𝐹 ‘ - 𝑎 ) = ( 𝐹 ‘ 0 ) ) |
| 112 |
111
|
breq2d |
⊢ ( - 𝑎 = 0 → ( 0 ≤ ( 𝐹 ‘ - 𝑎 ) ↔ 0 ≤ ( 𝐹 ‘ 0 ) ) ) |
| 113 |
112
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) ) ∧ - 𝑎 = 0 ) → ( 0 ≤ ( 𝐹 ‘ - 𝑎 ) ↔ 0 ≤ ( 𝐹 ‘ 0 ) ) ) |
| 114 |
110 113
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) ) ∧ - 𝑎 = 0 ) → 0 ≤ ( 𝐹 ‘ - 𝑎 ) ) |
| 115 |
|
elnn0 |
⊢ ( - 𝑎 ∈ ℕ0 ↔ ( - 𝑎 ∈ ℕ ∨ - 𝑎 = 0 ) ) |
| 116 |
115
|
biimpi |
⊢ ( - 𝑎 ∈ ℕ0 → ( - 𝑎 ∈ ℕ ∨ - 𝑎 = 0 ) ) |
| 117 |
116
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) ) → ( - 𝑎 ∈ ℕ ∨ - 𝑎 = 0 ) ) |
| 118 |
107 114 117
|
mpjaodan |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) ) → 0 ≤ ( 𝐹 ‘ - 𝑎 ) ) |
| 119 |
|
negeq |
⊢ ( 𝑥 = 𝑎 → - 𝑥 = - 𝑎 ) |
| 120 |
119
|
fveq2d |
⊢ ( 𝑥 = 𝑎 → ( 𝐹 ‘ - 𝑥 ) = ( 𝐹 ‘ - 𝑎 ) ) |
| 121 |
10
|
negeqd |
⊢ ( 𝑥 = 𝑎 → - ( 𝐹 ‘ 𝑥 ) = - ( 𝐹 ‘ 𝑎 ) ) |
| 122 |
120 121
|
eqeq12d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝐹 ‘ - 𝑥 ) = - ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ - 𝑎 ) = - ( 𝐹 ‘ 𝑎 ) ) ) |
| 123 |
9 122
|
imbi12d |
⊢ ( 𝑥 = 𝑎 → ( ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → ( 𝐹 ‘ - 𝑥 ) = - ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → ( 𝐹 ‘ - 𝑎 ) = - ( 𝐹 ‘ 𝑎 ) ) ) ) |
| 124 |
123 2
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → ( 𝐹 ‘ - 𝑎 ) = - ( 𝐹 ‘ 𝑎 ) ) |
| 125 |
124
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝐹 ‘ - 𝑎 ) = - ( 𝐹 ‘ 𝑎 ) ) |
| 126 |
125
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) ) → ( 𝐹 ‘ - 𝑎 ) = - ( 𝐹 ‘ 𝑎 ) ) |
| 127 |
118 126
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) ) → 0 ≤ - ( 𝐹 ‘ 𝑎 ) ) |
| 128 |
41
|
le0neg1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) ) → ( ( 𝐹 ‘ 𝑎 ) ≤ 0 ↔ 0 ≤ - ( 𝐹 ‘ 𝑎 ) ) ) |
| 129 |
127 128
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) ) → ( 𝐹 ‘ 𝑎 ) ≤ 0 ) |
| 130 |
84
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) ) → ( 𝐹 ‘ 0 ) = 0 ) |
| 131 |
|
nngt0 |
⊢ ( 𝑏 ∈ ℕ → 0 < 𝑏 ) |
| 132 |
131
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) ) → 0 < 𝑏 ) |
| 133 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) ) → 𝜑 ) |
| 134 |
89
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) ) → 0 ∈ ℕ0 ) |
| 135 |
23
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) ) → 𝑏 ∈ ℕ0 ) |
| 136 |
|
simpl |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑏 ) → 𝑥 = 0 ) |
| 137 |
136
|
eleq1d |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑏 ) → ( 𝑥 ∈ ℕ0 ↔ 0 ∈ ℕ0 ) ) |
| 138 |
|
simpr |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑏 ) → 𝑦 = 𝑏 ) |
| 139 |
138
|
eleq1d |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑏 ) → ( 𝑦 ∈ ℕ0 ↔ 𝑏 ∈ ℕ0 ) ) |
| 140 |
137 139
|
3anbi23d |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑏 ) → ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ↔ ( 𝜑 ∧ 0 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ) |
| 141 |
|
breq12 |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑏 ) → ( 𝑥 < 𝑦 ↔ 0 < 𝑏 ) ) |
| 142 |
67 33
|
breqan12d |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑏 ) → ( ( 𝐹 ‘ 𝑥 ) < ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 0 ) < ( 𝐹 ‘ 𝑏 ) ) ) |
| 143 |
141 142
|
imbi12d |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑏 ) → ( ( 𝑥 < 𝑦 → ( 𝐹 ‘ 𝑥 ) < ( 𝐹 ‘ 𝑦 ) ) ↔ ( 0 < 𝑏 → ( 𝐹 ‘ 0 ) < ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 144 |
140 143
|
imbi12d |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑏 ) → ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑥 < 𝑦 → ( 𝐹 ‘ 𝑥 ) < ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( ( 𝜑 ∧ 0 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) → ( 0 < 𝑏 → ( 𝐹 ‘ 0 ) < ( 𝐹 ‘ 𝑏 ) ) ) ) ) |
| 145 |
64 26 144 3
|
vtocl2 |
⊢ ( ( 𝜑 ∧ 0 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) → ( 0 < 𝑏 → ( 𝐹 ‘ 0 ) < ( 𝐹 ‘ 𝑏 ) ) ) |
| 146 |
133 134 135 145
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) ) → ( 0 < 𝑏 → ( 𝐹 ‘ 0 ) < ( 𝐹 ‘ 𝑏 ) ) ) |
| 147 |
132 146
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) ) → ( 𝐹 ‘ 0 ) < ( 𝐹 ‘ 𝑏 ) ) |
| 148 |
130 147
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) ) → 0 < ( 𝐹 ‘ 𝑏 ) ) |
| 149 |
41 42 50 129 148
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) ) → ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ) |
| 150 |
149
|
a1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) ) → ( 𝑎 < 𝑏 → ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ) ) |
| 151 |
150
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( - 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ ) → ( 𝑎 < 𝑏 → ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 152 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℕ ∧ - 𝑏 ∈ ℕ0 ) ∧ 𝑎 < 𝑏 ) → 𝑎 < 𝑏 ) |
| 153 |
|
zre |
⊢ ( 𝑏 ∈ ℤ → 𝑏 ∈ ℝ ) |
| 154 |
153
|
adantl |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → 𝑏 ∈ ℝ ) |
| 155 |
154
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℕ ∧ - 𝑏 ∈ ℕ0 ) ) → 𝑏 ∈ ℝ ) |
| 156 |
|
1red |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℕ ∧ - 𝑏 ∈ ℕ0 ) ) → 1 ∈ ℝ ) |
| 157 |
|
nnre |
⊢ ( 𝑎 ∈ ℕ → 𝑎 ∈ ℝ ) |
| 158 |
157
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℕ ∧ - 𝑏 ∈ ℕ0 ) ) → 𝑎 ∈ ℝ ) |
| 159 |
|
0red |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℕ ∧ - 𝑏 ∈ ℕ0 ) ) → 0 ∈ ℝ ) |
| 160 |
|
nn0ge0 |
⊢ ( - 𝑏 ∈ ℕ0 → 0 ≤ - 𝑏 ) |
| 161 |
160
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℕ ∧ - 𝑏 ∈ ℕ0 ) ) → 0 ≤ - 𝑏 ) |
| 162 |
155
|
le0neg1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℕ ∧ - 𝑏 ∈ ℕ0 ) ) → ( 𝑏 ≤ 0 ↔ 0 ≤ - 𝑏 ) ) |
| 163 |
161 162
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℕ ∧ - 𝑏 ∈ ℕ0 ) ) → 𝑏 ≤ 0 ) |
| 164 |
|
0le1 |
⊢ 0 ≤ 1 |
| 165 |
164
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℕ ∧ - 𝑏 ∈ ℕ0 ) ) → 0 ≤ 1 ) |
| 166 |
155 159 156 163 165
|
letrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℕ ∧ - 𝑏 ∈ ℕ0 ) ) → 𝑏 ≤ 1 ) |
| 167 |
|
nnge1 |
⊢ ( 𝑎 ∈ ℕ → 1 ≤ 𝑎 ) |
| 168 |
167
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℕ ∧ - 𝑏 ∈ ℕ0 ) ) → 1 ≤ 𝑎 ) |
| 169 |
155 156 158 166 168
|
letrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℕ ∧ - 𝑏 ∈ ℕ0 ) ) → 𝑏 ≤ 𝑎 ) |
| 170 |
155 158
|
lenltd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℕ ∧ - 𝑏 ∈ ℕ0 ) ) → ( 𝑏 ≤ 𝑎 ↔ ¬ 𝑎 < 𝑏 ) ) |
| 171 |
169 170
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℕ ∧ - 𝑏 ∈ ℕ0 ) ) → ¬ 𝑎 < 𝑏 ) |
| 172 |
171
|
3adant3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℕ ∧ - 𝑏 ∈ ℕ0 ) ∧ 𝑎 < 𝑏 ) → ¬ 𝑎 < 𝑏 ) |
| 173 |
152 172
|
pm2.21dd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℕ ∧ - 𝑏 ∈ ℕ0 ) ∧ 𝑎 < 𝑏 ) → ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ) |
| 174 |
173
|
3exp |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝑎 ∈ ℕ ∧ - 𝑏 ∈ ℕ0 ) → ( 𝑎 < 𝑏 → ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 175 |
|
negex |
⊢ - 𝑏 ∈ V |
| 176 |
|
simpl |
⊢ ( ( 𝑥 = - 𝑏 ∧ 𝑦 = - 𝑎 ) → 𝑥 = - 𝑏 ) |
| 177 |
176
|
eleq1d |
⊢ ( ( 𝑥 = - 𝑏 ∧ 𝑦 = - 𝑎 ) → ( 𝑥 ∈ ℕ0 ↔ - 𝑏 ∈ ℕ0 ) ) |
| 178 |
|
simpr |
⊢ ( ( 𝑥 = - 𝑏 ∧ 𝑦 = - 𝑎 ) → 𝑦 = - 𝑎 ) |
| 179 |
178
|
eleq1d |
⊢ ( ( 𝑥 = - 𝑏 ∧ 𝑦 = - 𝑎 ) → ( 𝑦 ∈ ℕ0 ↔ - 𝑎 ∈ ℕ0 ) ) |
| 180 |
177 179
|
3anbi23d |
⊢ ( ( 𝑥 = - 𝑏 ∧ 𝑦 = - 𝑎 ) → ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ↔ ( 𝜑 ∧ - 𝑏 ∈ ℕ0 ∧ - 𝑎 ∈ ℕ0 ) ) ) |
| 181 |
|
breq12 |
⊢ ( ( 𝑥 = - 𝑏 ∧ 𝑦 = - 𝑎 ) → ( 𝑥 < 𝑦 ↔ - 𝑏 < - 𝑎 ) ) |
| 182 |
|
fveq2 |
⊢ ( 𝑥 = - 𝑏 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ - 𝑏 ) ) |
| 183 |
|
fveq2 |
⊢ ( 𝑦 = - 𝑎 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ - 𝑎 ) ) |
| 184 |
182 183
|
breqan12d |
⊢ ( ( 𝑥 = - 𝑏 ∧ 𝑦 = - 𝑎 ) → ( ( 𝐹 ‘ 𝑥 ) < ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ - 𝑏 ) < ( 𝐹 ‘ - 𝑎 ) ) ) |
| 185 |
181 184
|
imbi12d |
⊢ ( ( 𝑥 = - 𝑏 ∧ 𝑦 = - 𝑎 ) → ( ( 𝑥 < 𝑦 → ( 𝐹 ‘ 𝑥 ) < ( 𝐹 ‘ 𝑦 ) ) ↔ ( - 𝑏 < - 𝑎 → ( 𝐹 ‘ - 𝑏 ) < ( 𝐹 ‘ - 𝑎 ) ) ) ) |
| 186 |
180 185
|
imbi12d |
⊢ ( ( 𝑥 = - 𝑏 ∧ 𝑦 = - 𝑎 ) → ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑥 < 𝑦 → ( 𝐹 ‘ 𝑥 ) < ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( ( 𝜑 ∧ - 𝑏 ∈ ℕ0 ∧ - 𝑎 ∈ ℕ0 ) → ( - 𝑏 < - 𝑎 → ( 𝐹 ‘ - 𝑏 ) < ( 𝐹 ‘ - 𝑎 ) ) ) ) ) |
| 187 |
175 54 186 3
|
vtocl2 |
⊢ ( ( 𝜑 ∧ - 𝑏 ∈ ℕ0 ∧ - 𝑎 ∈ ℕ0 ) → ( - 𝑏 < - 𝑎 → ( 𝐹 ‘ - 𝑏 ) < ( 𝐹 ‘ - 𝑎 ) ) ) |
| 188 |
187
|
3com23 |
⊢ ( ( 𝜑 ∧ - 𝑎 ∈ ℕ0 ∧ - 𝑏 ∈ ℕ0 ) → ( - 𝑏 < - 𝑎 → ( 𝐹 ‘ - 𝑏 ) < ( 𝐹 ‘ - 𝑎 ) ) ) |
| 189 |
188
|
3expb |
⊢ ( ( 𝜑 ∧ ( - 𝑎 ∈ ℕ0 ∧ - 𝑏 ∈ ℕ0 ) ) → ( - 𝑏 < - 𝑎 → ( 𝐹 ‘ - 𝑏 ) < ( 𝐹 ‘ - 𝑎 ) ) ) |
| 190 |
189
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ - 𝑏 ∈ ℕ0 ) ) → ( - 𝑏 < - 𝑎 → ( 𝐹 ‘ - 𝑏 ) < ( 𝐹 ‘ - 𝑎 ) ) ) |
| 191 |
|
negeq |
⊢ ( 𝑥 = 𝑏 → - 𝑥 = - 𝑏 ) |
| 192 |
191
|
fveq2d |
⊢ ( 𝑥 = 𝑏 → ( 𝐹 ‘ - 𝑥 ) = ( 𝐹 ‘ - 𝑏 ) ) |
| 193 |
45
|
negeqd |
⊢ ( 𝑥 = 𝑏 → - ( 𝐹 ‘ 𝑥 ) = - ( 𝐹 ‘ 𝑏 ) ) |
| 194 |
192 193
|
eqeq12d |
⊢ ( 𝑥 = 𝑏 → ( ( 𝐹 ‘ - 𝑥 ) = - ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ - 𝑏 ) = - ( 𝐹 ‘ 𝑏 ) ) ) |
| 195 |
44 194
|
imbi12d |
⊢ ( 𝑥 = 𝑏 → ( ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → ( 𝐹 ‘ - 𝑥 ) = - ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( 𝜑 ∧ 𝑏 ∈ ℤ ) → ( 𝐹 ‘ - 𝑏 ) = - ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 196 |
195 2
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ℤ ) → ( 𝐹 ‘ - 𝑏 ) = - ( 𝐹 ‘ 𝑏 ) ) |
| 197 |
196
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝐹 ‘ - 𝑏 ) = - ( 𝐹 ‘ 𝑏 ) ) |
| 198 |
197
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ - 𝑏 ∈ ℕ0 ) ) → ( 𝐹 ‘ - 𝑏 ) = - ( 𝐹 ‘ 𝑏 ) ) |
| 199 |
125
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ - 𝑏 ∈ ℕ0 ) ) → ( 𝐹 ‘ - 𝑎 ) = - ( 𝐹 ‘ 𝑎 ) ) |
| 200 |
198 199
|
breq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ - 𝑏 ∈ ℕ0 ) ) → ( ( 𝐹 ‘ - 𝑏 ) < ( 𝐹 ‘ - 𝑎 ) ↔ - ( 𝐹 ‘ 𝑏 ) < - ( 𝐹 ‘ 𝑎 ) ) ) |
| 201 |
190 200
|
sylibd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ - 𝑏 ∈ ℕ0 ) ) → ( - 𝑏 < - 𝑎 → - ( 𝐹 ‘ 𝑏 ) < - ( 𝐹 ‘ 𝑎 ) ) ) |
| 202 |
|
zre |
⊢ ( 𝑎 ∈ ℤ → 𝑎 ∈ ℝ ) |
| 203 |
202
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → 𝑎 ∈ ℝ ) |
| 204 |
203
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ - 𝑏 ∈ ℕ0 ) ) → 𝑎 ∈ ℝ ) |
| 205 |
154
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ - 𝑏 ∈ ℕ0 ) ) → 𝑏 ∈ ℝ ) |
| 206 |
204 205
|
ltnegd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ - 𝑏 ∈ ℕ0 ) ) → ( 𝑎 < 𝑏 ↔ - 𝑏 < - 𝑎 ) ) |
| 207 |
40
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ - 𝑏 ∈ ℕ0 ) ) → ( 𝐹 ‘ 𝑎 ) ∈ ℝ ) |
| 208 |
49
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ - 𝑏 ∈ ℕ0 ) ) → ( 𝐹 ‘ 𝑏 ) ∈ ℝ ) |
| 209 |
207 208
|
ltnegd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ - 𝑏 ∈ ℕ0 ) ) → ( ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ↔ - ( 𝐹 ‘ 𝑏 ) < - ( 𝐹 ‘ 𝑎 ) ) ) |
| 210 |
201 206 209
|
3imtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( - 𝑎 ∈ ℕ0 ∧ - 𝑏 ∈ ℕ0 ) ) → ( 𝑎 < 𝑏 → ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ) ) |
| 211 |
210
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( - 𝑎 ∈ ℕ0 ∧ - 𝑏 ∈ ℕ0 ) → ( 𝑎 < 𝑏 → ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 212 |
39 151 174 211
|
ccased |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( ( 𝑎 ∈ ℕ ∨ - 𝑎 ∈ ℕ0 ) ∧ ( 𝑏 ∈ ℕ ∨ - 𝑏 ∈ ℕ0 ) ) → ( 𝑎 < 𝑏 → ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 213 |
19 212
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝑎 < 𝑏 → ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ) ) |
| 214 |
4 5 6 7 13 213
|
ltord1 |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) → ( 𝐴 < 𝐵 ↔ ( 𝐹 ‘ 𝐴 ) < ( 𝐹 ‘ 𝐵 ) ) ) |
| 215 |
214
|
3impb |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 < 𝐵 ↔ ( 𝐹 ‘ 𝐴 ) < ( 𝐹 ‘ 𝐵 ) ) ) |