Step |
Hyp |
Ref |
Expression |
1 |
|
ovncvrrp.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
2 |
|
ovncvrrp.n0 |
⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
3 |
|
ovncvrrp.a |
⊢ ( 𝜑 → 𝐴 ⊆ ( ℝ ↑m 𝑋 ) ) |
4 |
|
ovncvrrp.e |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
5 |
|
ovncvrrp.c |
⊢ 𝐶 = ( 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑘 ) } ) |
6 |
|
ovncvrrp.l |
⊢ 𝐿 = ( ℎ ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ℎ ) ‘ 𝑘 ) ) ) |
7 |
|
ovncvrrp.d |
⊢ 𝐷 = ( 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ ( 𝑒 ∈ ℝ+ ↦ { 𝑖 ∈ ( 𝐶 ‘ 𝑎 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) +𝑒 𝑒 ) } ) ) |
8 |
|
eqid |
⊢ { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } = { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } |
9 |
1 2 3 4 8
|
ovnlerp |
⊢ ( 𝜑 → ∃ 𝑧 ∈ { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } 𝑧 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) |
10 |
|
simp1 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } ∧ 𝑧 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) → 𝜑 ) |
11 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } ∧ 𝑧 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) → 𝑧 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) |
12 |
|
rabid |
⊢ ( 𝑧 ∈ { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } ↔ ( 𝑧 ∈ ℝ* ∧ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) ) |
13 |
12
|
biimpi |
⊢ ( 𝑧 ∈ { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } → ( 𝑧 ∈ ℝ* ∧ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) ) |
14 |
13
|
simprd |
⊢ ( 𝑧 ∈ { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } → ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝑧 ∈ { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } ∧ 𝑧 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) → ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) |
16 |
15
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } ∧ 𝑧 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) → ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) |
17 |
|
nfv |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝑧 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) |
18 |
|
nfe1 |
⊢ Ⅎ 𝑖 ∃ 𝑖 ( 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) |
19 |
|
simp1l |
⊢ ( ( ( 𝜑 ∧ 𝑧 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) ∧ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) → 𝜑 ) |
20 |
|
simp2 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) ∧ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) → 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ) |
21 |
|
simp3l |
⊢ ( ( ( 𝜑 ∧ 𝑧 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) ∧ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) → 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
22 |
|
id |
⊢ ( ( 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∧ 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) → ( 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∧ 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
23 |
|
fveq1 |
⊢ ( 𝑙 = 𝑖 → ( 𝑙 ‘ 𝑗 ) = ( 𝑖 ‘ 𝑗 ) ) |
24 |
23
|
coeq2d |
⊢ ( 𝑙 = 𝑖 → ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) = ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ) |
25 |
24
|
fveq1d |
⊢ ( 𝑙 = 𝑖 → ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑘 ) = ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
26 |
25
|
ixpeq2dv |
⊢ ( 𝑙 = 𝑖 → X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑘 ) = X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
27 |
26
|
iuneq2d |
⊢ ( 𝑙 = 𝑖 → ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑘 ) = ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
28 |
27
|
sseq2d |
⊢ ( 𝑙 = 𝑖 → ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑘 ) ↔ 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
29 |
28
|
elrab |
⊢ ( 𝑖 ∈ { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑘 ) } ↔ ( 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∧ 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
30 |
22 29
|
sylibr |
⊢ ( ( 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∧ 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) → 𝑖 ∈ { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑘 ) } ) |
31 |
30
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∧ 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) → 𝑖 ∈ { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑘 ) } ) |
32 |
|
sseq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑘 ) ↔ 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
33 |
32
|
rabbidv |
⊢ ( 𝑎 = 𝐴 → { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑘 ) } = { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑘 ) } ) |
34 |
|
ovexd |
⊢ ( 𝜑 → ( ℝ ↑m 𝑋 ) ∈ V ) |
35 |
34 3
|
ssexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
36 |
|
elpwg |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↔ 𝐴 ⊆ ( ℝ ↑m 𝑋 ) ) ) |
37 |
35 36
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↔ 𝐴 ⊆ ( ℝ ↑m 𝑋 ) ) ) |
38 |
3 37
|
mpbird |
⊢ ( 𝜑 → 𝐴 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) |
39 |
|
ovex |
⊢ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∈ V |
40 |
39
|
rabex |
⊢ { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑘 ) } ∈ V |
41 |
40
|
a1i |
⊢ ( 𝜑 → { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑘 ) } ∈ V ) |
42 |
5 33 38 41
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝐴 ) = { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑘 ) } ) |
43 |
42
|
eqcomd |
⊢ ( 𝜑 → { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑘 ) } = ( 𝐶 ‘ 𝐴 ) ) |
44 |
43
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∧ 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) → { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑘 ) } = ( 𝐶 ‘ 𝐴 ) ) |
45 |
31 44
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∧ 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) → 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ) |
46 |
19 20 21 45
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) ∧ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) → 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ) |
47 |
|
coeq2 |
⊢ ( ℎ = ( 𝑖 ‘ 𝑗 ) → ( [,) ∘ ℎ ) = ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ) |
48 |
47
|
fveq1d |
⊢ ( ℎ = ( 𝑖 ‘ 𝑗 ) → ( ( [,) ∘ ℎ ) ‘ 𝑘 ) = ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
49 |
48
|
fveq2d |
⊢ ( ℎ = ( 𝑖 ‘ 𝑗 ) → ( vol ‘ ( ( [,) ∘ ℎ ) ‘ 𝑘 ) ) = ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
50 |
49
|
prodeq2ad |
⊢ ( ℎ = ( 𝑖 ‘ 𝑗 ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ℎ ) ‘ 𝑘 ) ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
51 |
|
elmapi |
⊢ ( 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) → 𝑖 : ℕ ⟶ ( ( ℝ × ℝ ) ↑m 𝑋 ) ) |
52 |
51
|
adantr |
⊢ ( ( 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∧ 𝑗 ∈ ℕ ) → 𝑖 : ℕ ⟶ ( ( ℝ × ℝ ) ↑m 𝑋 ) ) |
53 |
|
simpr |
⊢ ( ( 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ ) |
54 |
52 53
|
ffvelrnd |
⊢ ( ( 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∧ 𝑗 ∈ ℕ ) → ( 𝑖 ‘ 𝑗 ) ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ) |
55 |
|
prodex |
⊢ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ∈ V |
56 |
55
|
a1i |
⊢ ( ( 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∧ 𝑗 ∈ ℕ ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ∈ V ) |
57 |
6 50 54 56
|
fvmptd3 |
⊢ ( ( 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∧ 𝑗 ∈ ℕ ) → ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
58 |
57
|
mpteq2dva |
⊢ ( 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) → ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) = ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) |
59 |
58
|
fveq2d |
⊢ ( 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) |
60 |
59
|
adantr |
⊢ ( ( 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) |
61 |
|
id |
⊢ ( 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) → 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) |
62 |
61
|
eqcomd |
⊢ ( 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) = 𝑧 ) |
63 |
62
|
adantl |
⊢ ( ( 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) = 𝑧 ) |
64 |
60 63
|
eqtrd |
⊢ ( ( 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) = 𝑧 ) |
65 |
64
|
3adant1 |
⊢ ( ( 𝑧 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ∧ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) = 𝑧 ) |
66 |
|
simp1 |
⊢ ( ( 𝑧 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ∧ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) → 𝑧 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) |
67 |
65 66
|
eqbrtrd |
⊢ ( ( 𝑧 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ∧ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) |
68 |
67
|
3adant1l |
⊢ ( ( ( 𝜑 ∧ 𝑧 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) ∧ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) |
69 |
68
|
3adant3l |
⊢ ( ( ( 𝜑 ∧ 𝑧 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) ∧ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) |
70 |
46 69
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑧 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) ∧ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) → ( 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) ) |
71 |
70
|
19.8ad |
⊢ ( ( ( 𝜑 ∧ 𝑧 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) ∧ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) → ∃ 𝑖 ( 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) ) |
72 |
71
|
3exp |
⊢ ( ( 𝜑 ∧ 𝑧 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) → ( 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) → ( ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) → ∃ 𝑖 ( 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) ) ) ) |
73 |
17 18 72
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑧 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) → ( ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) → ∃ 𝑖 ( 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) ) ) |
74 |
73
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑧 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) ∧ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) → ∃ 𝑖 ( 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) ) |
75 |
10 11 16 74
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } ∧ 𝑧 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) → ∃ 𝑖 ( 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) ) |
76 |
75
|
3exp |
⊢ ( 𝜑 → ( 𝑧 ∈ { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } → ( 𝑧 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) → ∃ 𝑖 ( 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) ) ) ) |
77 |
76
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑧 ∈ { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } 𝑧 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) → ∃ 𝑖 ( 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) ) ) |
78 |
9 77
|
mpd |
⊢ ( 𝜑 → ∃ 𝑖 ( 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) ) |
79 |
|
rabid |
⊢ ( 𝑖 ∈ { 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) } ↔ ( 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) ) |
80 |
79
|
bicomi |
⊢ ( ( 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) ↔ 𝑖 ∈ { 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) } ) |
81 |
80
|
biimpi |
⊢ ( ( 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) → 𝑖 ∈ { 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) } ) |
82 |
81
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) ) → 𝑖 ∈ { 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) } ) |
83 |
|
nfcv |
⊢ Ⅎ 𝑏 ( 𝑒 ∈ ℝ+ ↦ { 𝑖 ∈ ( 𝐶 ‘ 𝑎 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) +𝑒 𝑒 ) } ) |
84 |
|
nfcv |
⊢ Ⅎ 𝑎 ℝ+ |
85 |
|
nfv |
⊢ Ⅎ 𝑎 ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑏 ) +𝑒 𝑒 ) |
86 |
|
nfmpt1 |
⊢ Ⅎ 𝑎 ( 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑘 ) } ) |
87 |
5 86
|
nfcxfr |
⊢ Ⅎ 𝑎 𝐶 |
88 |
|
nfcv |
⊢ Ⅎ 𝑎 𝑏 |
89 |
87 88
|
nffv |
⊢ Ⅎ 𝑎 ( 𝐶 ‘ 𝑏 ) |
90 |
85 89
|
nfrabw |
⊢ Ⅎ 𝑎 { 𝑖 ∈ ( 𝐶 ‘ 𝑏 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑏 ) +𝑒 𝑒 ) } |
91 |
84 90
|
nfmpt |
⊢ Ⅎ 𝑎 ( 𝑒 ∈ ℝ+ ↦ { 𝑖 ∈ ( 𝐶 ‘ 𝑏 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑏 ) +𝑒 𝑒 ) } ) |
92 |
|
fveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝐶 ‘ 𝑎 ) = ( 𝐶 ‘ 𝑏 ) ) |
93 |
92
|
eleq2d |
⊢ ( 𝑎 = 𝑏 → ( 𝑖 ∈ ( 𝐶 ‘ 𝑎 ) ↔ 𝑖 ∈ ( 𝐶 ‘ 𝑏 ) ) ) |
94 |
|
fveq2 |
⊢ ( 𝑎 = 𝑏 → ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) = ( ( voln* ‘ 𝑋 ) ‘ 𝑏 ) ) |
95 |
94
|
oveq1d |
⊢ ( 𝑎 = 𝑏 → ( ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) +𝑒 𝑒 ) = ( ( ( voln* ‘ 𝑋 ) ‘ 𝑏 ) +𝑒 𝑒 ) ) |
96 |
95
|
breq2d |
⊢ ( 𝑎 = 𝑏 → ( ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) +𝑒 𝑒 ) ↔ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑏 ) +𝑒 𝑒 ) ) ) |
97 |
93 96
|
anbi12d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑖 ∈ ( 𝐶 ‘ 𝑎 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) +𝑒 𝑒 ) ) ↔ ( 𝑖 ∈ ( 𝐶 ‘ 𝑏 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑏 ) +𝑒 𝑒 ) ) ) ) |
98 |
97
|
rabbidva2 |
⊢ ( 𝑎 = 𝑏 → { 𝑖 ∈ ( 𝐶 ‘ 𝑎 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) +𝑒 𝑒 ) } = { 𝑖 ∈ ( 𝐶 ‘ 𝑏 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑏 ) +𝑒 𝑒 ) } ) |
99 |
98
|
mpteq2dv |
⊢ ( 𝑎 = 𝑏 → ( 𝑒 ∈ ℝ+ ↦ { 𝑖 ∈ ( 𝐶 ‘ 𝑎 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) +𝑒 𝑒 ) } ) = ( 𝑒 ∈ ℝ+ ↦ { 𝑖 ∈ ( 𝐶 ‘ 𝑏 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑏 ) +𝑒 𝑒 ) } ) ) |
100 |
83 91 99
|
cbvmpt |
⊢ ( 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ ( 𝑒 ∈ ℝ+ ↦ { 𝑖 ∈ ( 𝐶 ‘ 𝑎 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) +𝑒 𝑒 ) } ) ) = ( 𝑏 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ ( 𝑒 ∈ ℝ+ ↦ { 𝑖 ∈ ( 𝐶 ‘ 𝑏 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑏 ) +𝑒 𝑒 ) } ) ) |
101 |
7 100
|
eqtri |
⊢ 𝐷 = ( 𝑏 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ ( 𝑒 ∈ ℝ+ ↦ { 𝑖 ∈ ( 𝐶 ‘ 𝑏 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑏 ) +𝑒 𝑒 ) } ) ) |
102 |
|
fveq2 |
⊢ ( 𝑏 = 𝐴 → ( 𝐶 ‘ 𝑏 ) = ( 𝐶 ‘ 𝐴 ) ) |
103 |
102
|
eleq2d |
⊢ ( 𝑏 = 𝐴 → ( 𝑖 ∈ ( 𝐶 ‘ 𝑏 ) ↔ 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ) ) |
104 |
|
fveq2 |
⊢ ( 𝑏 = 𝐴 → ( ( voln* ‘ 𝑋 ) ‘ 𝑏 ) = ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) ) |
105 |
104
|
oveq1d |
⊢ ( 𝑏 = 𝐴 → ( ( ( voln* ‘ 𝑋 ) ‘ 𝑏 ) +𝑒 𝑒 ) = ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝑒 ) ) |
106 |
105
|
breq2d |
⊢ ( 𝑏 = 𝐴 → ( ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑏 ) +𝑒 𝑒 ) ↔ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝑒 ) ) ) |
107 |
103 106
|
anbi12d |
⊢ ( 𝑏 = 𝐴 → ( ( 𝑖 ∈ ( 𝐶 ‘ 𝑏 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑏 ) +𝑒 𝑒 ) ) ↔ ( 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝑒 ) ) ) ) |
108 |
107
|
rabbidva2 |
⊢ ( 𝑏 = 𝐴 → { 𝑖 ∈ ( 𝐶 ‘ 𝑏 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑏 ) +𝑒 𝑒 ) } = { 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝑒 ) } ) |
109 |
108
|
mpteq2dv |
⊢ ( 𝑏 = 𝐴 → ( 𝑒 ∈ ℝ+ ↦ { 𝑖 ∈ ( 𝐶 ‘ 𝑏 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑏 ) +𝑒 𝑒 ) } ) = ( 𝑒 ∈ ℝ+ ↦ { 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝑒 ) } ) ) |
110 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) ) → 𝐴 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) |
111 |
|
rpex |
⊢ ℝ+ ∈ V |
112 |
111
|
mptex |
⊢ ( 𝑒 ∈ ℝ+ ↦ { 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝑒 ) } ) ∈ V |
113 |
112
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) ) → ( 𝑒 ∈ ℝ+ ↦ { 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝑒 ) } ) ∈ V ) |
114 |
101 109 110 113
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) ) → ( 𝐷 ‘ 𝐴 ) = ( 𝑒 ∈ ℝ+ ↦ { 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝑒 ) } ) ) |
115 |
|
oveq2 |
⊢ ( 𝑒 = 𝐸 → ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝑒 ) = ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) |
116 |
115
|
breq2d |
⊢ ( 𝑒 = 𝐸 → ( ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝑒 ) ↔ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) ) |
117 |
116
|
rabbidv |
⊢ ( 𝑒 = 𝐸 → { 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝑒 ) } = { 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) } ) |
118 |
117
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) ) ∧ 𝑒 = 𝐸 ) → { 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝑒 ) } = { 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) } ) |
119 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) ) → 𝐸 ∈ ℝ+ ) |
120 |
|
fvex |
⊢ ( 𝐶 ‘ 𝐴 ) ∈ V |
121 |
120
|
rabex |
⊢ { 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) } ∈ V |
122 |
121
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) ) → { 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) } ∈ V ) |
123 |
114 118 119 122
|
fvmptd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) ) → ( ( 𝐷 ‘ 𝐴 ) ‘ 𝐸 ) = { 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) } ) |
124 |
123
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) ) → { 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) } = ( ( 𝐷 ‘ 𝐴 ) ‘ 𝐸 ) ) |
125 |
82 124
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) ) → 𝑖 ∈ ( ( 𝐷 ‘ 𝐴 ) ‘ 𝐸 ) ) |
126 |
125
|
ex |
⊢ ( 𝜑 → ( ( 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) → 𝑖 ∈ ( ( 𝐷 ‘ 𝐴 ) ‘ 𝐸 ) ) ) |
127 |
126
|
eximdv |
⊢ ( 𝜑 → ( ∃ 𝑖 ( 𝑖 ∈ ( 𝐶 ‘ 𝐴 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝑖 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) → ∃ 𝑖 𝑖 ∈ ( ( 𝐷 ‘ 𝐴 ) ‘ 𝐸 ) ) ) |
128 |
78 127
|
mpd |
⊢ ( 𝜑 → ∃ 𝑖 𝑖 ∈ ( ( 𝐷 ‘ 𝐴 ) ‘ 𝐸 ) ) |