Metamath Proof Explorer


Theorem ovoliunnul

Description: A countable union of nullsets is null. (Contributed by Mario Carneiro, 8-Apr-2015)

Ref Expression
Assertion ovoliunnul ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) → ( vol* ‘ 𝑛𝐴 𝐵 ) = 0 )

Proof

Step Hyp Ref Expression
1 iuneq1 ( 𝐴 = ∅ → 𝑛𝐴 𝐵 = 𝑛 ∈ ∅ 𝐵 )
2 0iun 𝑛 ∈ ∅ 𝐵 = ∅
3 1 2 eqtrdi ( 𝐴 = ∅ → 𝑛𝐴 𝐵 = ∅ )
4 3 fveq2d ( 𝐴 = ∅ → ( vol* ‘ 𝑛𝐴 𝐵 ) = ( vol* ‘ ∅ ) )
5 ovol0 ( vol* ‘ ∅ ) = 0
6 4 5 eqtrdi ( 𝐴 = ∅ → ( vol* ‘ 𝑛𝐴 𝐵 ) = 0 )
7 6 a1i ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) → ( 𝐴 = ∅ → ( vol* ‘ 𝑛𝐴 𝐵 ) = 0 ) )
8 reldom Rel ≼
9 8 brrelex1i ( 𝐴 ≼ ℕ → 𝐴 ∈ V )
10 9 adantr ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) → 𝐴 ∈ V )
11 0sdomg ( 𝐴 ∈ V → ( ∅ ≺ 𝐴𝐴 ≠ ∅ ) )
12 10 11 syl ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) → ( ∅ ≺ 𝐴𝐴 ≠ ∅ ) )
13 fodomr ( ( ∅ ≺ 𝐴𝐴 ≼ ℕ ) → ∃ 𝑓 𝑓 : ℕ –onto𝐴 )
14 13 expcom ( 𝐴 ≼ ℕ → ( ∅ ≺ 𝐴 → ∃ 𝑓 𝑓 : ℕ –onto𝐴 ) )
15 14 adantr ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) → ( ∅ ≺ 𝐴 → ∃ 𝑓 𝑓 : ℕ –onto𝐴 ) )
16 eliun ( 𝑥 𝑛𝐴 𝐵 ↔ ∃ 𝑛𝐴 𝑥𝐵 )
17 nfv 𝑛 𝑓 : ℕ –onto𝐴
18 nfcv 𝑛
19 nfcsb1v 𝑛 ( 𝑓𝑘 ) / 𝑛 𝐵
20 18 19 nfiun 𝑛 𝑘 ∈ ℕ ( 𝑓𝑘 ) / 𝑛 𝐵
21 20 nfcri 𝑛 𝑥 𝑘 ∈ ℕ ( 𝑓𝑘 ) / 𝑛 𝐵
22 foelrn ( ( 𝑓 : ℕ –onto𝐴𝑛𝐴 ) → ∃ 𝑘 ∈ ℕ 𝑛 = ( 𝑓𝑘 ) )
23 22 ex ( 𝑓 : ℕ –onto𝐴 → ( 𝑛𝐴 → ∃ 𝑘 ∈ ℕ 𝑛 = ( 𝑓𝑘 ) ) )
24 csbeq1a ( 𝑛 = ( 𝑓𝑘 ) → 𝐵 = ( 𝑓𝑘 ) / 𝑛 𝐵 )
25 24 adantl ( ( 𝑓 : ℕ –onto𝐴𝑛 = ( 𝑓𝑘 ) ) → 𝐵 = ( 𝑓𝑘 ) / 𝑛 𝐵 )
26 25 eleq2d ( ( 𝑓 : ℕ –onto𝐴𝑛 = ( 𝑓𝑘 ) ) → ( 𝑥𝐵𝑥 ( 𝑓𝑘 ) / 𝑛 𝐵 ) )
27 26 biimpd ( ( 𝑓 : ℕ –onto𝐴𝑛 = ( 𝑓𝑘 ) ) → ( 𝑥𝐵𝑥 ( 𝑓𝑘 ) / 𝑛 𝐵 ) )
28 27 impancom ( ( 𝑓 : ℕ –onto𝐴𝑥𝐵 ) → ( 𝑛 = ( 𝑓𝑘 ) → 𝑥 ( 𝑓𝑘 ) / 𝑛 𝐵 ) )
29 28 reximdv ( ( 𝑓 : ℕ –onto𝐴𝑥𝐵 ) → ( ∃ 𝑘 ∈ ℕ 𝑛 = ( 𝑓𝑘 ) → ∃ 𝑘 ∈ ℕ 𝑥 ( 𝑓𝑘 ) / 𝑛 𝐵 ) )
30 eliun ( 𝑥 𝑘 ∈ ℕ ( 𝑓𝑘 ) / 𝑛 𝐵 ↔ ∃ 𝑘 ∈ ℕ 𝑥 ( 𝑓𝑘 ) / 𝑛 𝐵 )
31 29 30 syl6ibr ( ( 𝑓 : ℕ –onto𝐴𝑥𝐵 ) → ( ∃ 𝑘 ∈ ℕ 𝑛 = ( 𝑓𝑘 ) → 𝑥 𝑘 ∈ ℕ ( 𝑓𝑘 ) / 𝑛 𝐵 ) )
32 31 ex ( 𝑓 : ℕ –onto𝐴 → ( 𝑥𝐵 → ( ∃ 𝑘 ∈ ℕ 𝑛 = ( 𝑓𝑘 ) → 𝑥 𝑘 ∈ ℕ ( 𝑓𝑘 ) / 𝑛 𝐵 ) ) )
33 32 com23 ( 𝑓 : ℕ –onto𝐴 → ( ∃ 𝑘 ∈ ℕ 𝑛 = ( 𝑓𝑘 ) → ( 𝑥𝐵𝑥 𝑘 ∈ ℕ ( 𝑓𝑘 ) / 𝑛 𝐵 ) ) )
34 23 33 syld ( 𝑓 : ℕ –onto𝐴 → ( 𝑛𝐴 → ( 𝑥𝐵𝑥 𝑘 ∈ ℕ ( 𝑓𝑘 ) / 𝑛 𝐵 ) ) )
35 17 21 34 rexlimd ( 𝑓 : ℕ –onto𝐴 → ( ∃ 𝑛𝐴 𝑥𝐵𝑥 𝑘 ∈ ℕ ( 𝑓𝑘 ) / 𝑛 𝐵 ) )
36 16 35 syl5bi ( 𝑓 : ℕ –onto𝐴 → ( 𝑥 𝑛𝐴 𝐵𝑥 𝑘 ∈ ℕ ( 𝑓𝑘 ) / 𝑛 𝐵 ) )
37 36 ssrdv ( 𝑓 : ℕ –onto𝐴 𝑛𝐴 𝐵 𝑘 ∈ ℕ ( 𝑓𝑘 ) / 𝑛 𝐵 )
38 37 adantl ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto𝐴 ) → 𝑛𝐴 𝐵 𝑘 ∈ ℕ ( 𝑓𝑘 ) / 𝑛 𝐵 )
39 fof ( 𝑓 : ℕ –onto𝐴𝑓 : ℕ ⟶ 𝐴 )
40 39 adantl ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto𝐴 ) → 𝑓 : ℕ ⟶ 𝐴 )
41 40 ffvelrnda ( ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑓𝑘 ) ∈ 𝐴 )
42 simpllr ( ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto𝐴 ) ∧ 𝑘 ∈ ℕ ) → ∀ 𝑛𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) )
43 nfcv 𝑛
44 19 43 nfss 𝑛 ( 𝑓𝑘 ) / 𝑛 𝐵 ⊆ ℝ
45 nfcv 𝑛 vol*
46 45 19 nffv 𝑛 ( vol* ‘ ( 𝑓𝑘 ) / 𝑛 𝐵 )
47 46 nfeq1 𝑛 ( vol* ‘ ( 𝑓𝑘 ) / 𝑛 𝐵 ) = 0
48 44 47 nfan 𝑛 ( ( 𝑓𝑘 ) / 𝑛 𝐵 ⊆ ℝ ∧ ( vol* ‘ ( 𝑓𝑘 ) / 𝑛 𝐵 ) = 0 )
49 24 sseq1d ( 𝑛 = ( 𝑓𝑘 ) → ( 𝐵 ⊆ ℝ ↔ ( 𝑓𝑘 ) / 𝑛 𝐵 ⊆ ℝ ) )
50 24 fveqeq2d ( 𝑛 = ( 𝑓𝑘 ) → ( ( vol* ‘ 𝐵 ) = 0 ↔ ( vol* ‘ ( 𝑓𝑘 ) / 𝑛 𝐵 ) = 0 ) )
51 49 50 anbi12d ( 𝑛 = ( 𝑓𝑘 ) → ( ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ↔ ( ( 𝑓𝑘 ) / 𝑛 𝐵 ⊆ ℝ ∧ ( vol* ‘ ( 𝑓𝑘 ) / 𝑛 𝐵 ) = 0 ) ) )
52 48 51 rspc ( ( 𝑓𝑘 ) ∈ 𝐴 → ( ∀ 𝑛𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → ( ( 𝑓𝑘 ) / 𝑛 𝐵 ⊆ ℝ ∧ ( vol* ‘ ( 𝑓𝑘 ) / 𝑛 𝐵 ) = 0 ) ) )
53 41 42 52 sylc ( ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑓𝑘 ) / 𝑛 𝐵 ⊆ ℝ ∧ ( vol* ‘ ( 𝑓𝑘 ) / 𝑛 𝐵 ) = 0 ) )
54 53 simpld ( ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑓𝑘 ) / 𝑛 𝐵 ⊆ ℝ )
55 54 ralrimiva ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto𝐴 ) → ∀ 𝑘 ∈ ℕ ( 𝑓𝑘 ) / 𝑛 𝐵 ⊆ ℝ )
56 iunss ( 𝑘 ∈ ℕ ( 𝑓𝑘 ) / 𝑛 𝐵 ⊆ ℝ ↔ ∀ 𝑘 ∈ ℕ ( 𝑓𝑘 ) / 𝑛 𝐵 ⊆ ℝ )
57 55 56 sylibr ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto𝐴 ) → 𝑘 ∈ ℕ ( 𝑓𝑘 ) / 𝑛 𝐵 ⊆ ℝ )
58 eqid seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol* ‘ ( 𝑓𝑘 ) / 𝑛 𝐵 ) ) ) = seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol* ‘ ( 𝑓𝑘 ) / 𝑛 𝐵 ) ) )
59 eqid ( 𝑘 ∈ ℕ ↦ ( vol* ‘ ( 𝑓𝑘 ) / 𝑛 𝐵 ) ) = ( 𝑘 ∈ ℕ ↦ ( vol* ‘ ( 𝑓𝑘 ) / 𝑛 𝐵 ) )
60 53 simprd ( ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝑓𝑘 ) / 𝑛 𝐵 ) = 0 )
61 0re 0 ∈ ℝ
62 60 61 eqeltrdi ( ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝑓𝑘 ) / 𝑛 𝐵 ) ∈ ℝ )
63 60 mpteq2dva ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto𝐴 ) → ( 𝑘 ∈ ℕ ↦ ( vol* ‘ ( 𝑓𝑘 ) / 𝑛 𝐵 ) ) = ( 𝑘 ∈ ℕ ↦ 0 ) )
64 fconstmpt ( ℕ × { 0 } ) = ( 𝑘 ∈ ℕ ↦ 0 )
65 nnuz ℕ = ( ℤ ‘ 1 )
66 65 xpeq1i ( ℕ × { 0 } ) = ( ( ℤ ‘ 1 ) × { 0 } )
67 64 66 eqtr3i ( 𝑘 ∈ ℕ ↦ 0 ) = ( ( ℤ ‘ 1 ) × { 0 } )
68 63 67 eqtrdi ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto𝐴 ) → ( 𝑘 ∈ ℕ ↦ ( vol* ‘ ( 𝑓𝑘 ) / 𝑛 𝐵 ) ) = ( ( ℤ ‘ 1 ) × { 0 } ) )
69 68 seqeq3d ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto𝐴 ) → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol* ‘ ( 𝑓𝑘 ) / 𝑛 𝐵 ) ) ) = seq 1 ( + , ( ( ℤ ‘ 1 ) × { 0 } ) ) )
70 1z 1 ∈ ℤ
71 serclim0 ( 1 ∈ ℤ → seq 1 ( + , ( ( ℤ ‘ 1 ) × { 0 } ) ) ⇝ 0 )
72 seqex seq 1 ( + , ( ( ℤ ‘ 1 ) × { 0 } ) ) ∈ V
73 c0ex 0 ∈ V
74 72 73 breldm ( seq 1 ( + , ( ( ℤ ‘ 1 ) × { 0 } ) ) ⇝ 0 → seq 1 ( + , ( ( ℤ ‘ 1 ) × { 0 } ) ) ∈ dom ⇝ )
75 70 71 74 mp2b seq 1 ( + , ( ( ℤ ‘ 1 ) × { 0 } ) ) ∈ dom ⇝
76 69 75 eqeltrdi ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto𝐴 ) → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol* ‘ ( 𝑓𝑘 ) / 𝑛 𝐵 ) ) ) ∈ dom ⇝ )
77 58 59 54 62 76 ovoliun2 ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto𝐴 ) → ( vol* ‘ 𝑘 ∈ ℕ ( 𝑓𝑘 ) / 𝑛 𝐵 ) ≤ Σ 𝑘 ∈ ℕ ( vol* ‘ ( 𝑓𝑘 ) / 𝑛 𝐵 ) )
78 60 sumeq2dv ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto𝐴 ) → Σ 𝑘 ∈ ℕ ( vol* ‘ ( 𝑓𝑘 ) / 𝑛 𝐵 ) = Σ 𝑘 ∈ ℕ 0 )
79 65 eqimssi ℕ ⊆ ( ℤ ‘ 1 )
80 79 orci ( ℕ ⊆ ( ℤ ‘ 1 ) ∨ ℕ ∈ Fin )
81 sumz ( ( ℕ ⊆ ( ℤ ‘ 1 ) ∨ ℕ ∈ Fin ) → Σ 𝑘 ∈ ℕ 0 = 0 )
82 80 81 ax-mp Σ 𝑘 ∈ ℕ 0 = 0
83 78 82 eqtrdi ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto𝐴 ) → Σ 𝑘 ∈ ℕ ( vol* ‘ ( 𝑓𝑘 ) / 𝑛 𝐵 ) = 0 )
84 77 83 breqtrd ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto𝐴 ) → ( vol* ‘ 𝑘 ∈ ℕ ( 𝑓𝑘 ) / 𝑛 𝐵 ) ≤ 0 )
85 ovolge0 ( 𝑘 ∈ ℕ ( 𝑓𝑘 ) / 𝑛 𝐵 ⊆ ℝ → 0 ≤ ( vol* ‘ 𝑘 ∈ ℕ ( 𝑓𝑘 ) / 𝑛 𝐵 ) )
86 57 85 syl ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto𝐴 ) → 0 ≤ ( vol* ‘ 𝑘 ∈ ℕ ( 𝑓𝑘 ) / 𝑛 𝐵 ) )
87 ovolcl ( 𝑘 ∈ ℕ ( 𝑓𝑘 ) / 𝑛 𝐵 ⊆ ℝ → ( vol* ‘ 𝑘 ∈ ℕ ( 𝑓𝑘 ) / 𝑛 𝐵 ) ∈ ℝ* )
88 57 87 syl ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto𝐴 ) → ( vol* ‘ 𝑘 ∈ ℕ ( 𝑓𝑘 ) / 𝑛 𝐵 ) ∈ ℝ* )
89 0xr 0 ∈ ℝ*
90 xrletri3 ( ( ( vol* ‘ 𝑘 ∈ ℕ ( 𝑓𝑘 ) / 𝑛 𝐵 ) ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( ( vol* ‘ 𝑘 ∈ ℕ ( 𝑓𝑘 ) / 𝑛 𝐵 ) = 0 ↔ ( ( vol* ‘ 𝑘 ∈ ℕ ( 𝑓𝑘 ) / 𝑛 𝐵 ) ≤ 0 ∧ 0 ≤ ( vol* ‘ 𝑘 ∈ ℕ ( 𝑓𝑘 ) / 𝑛 𝐵 ) ) ) )
91 88 89 90 sylancl ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto𝐴 ) → ( ( vol* ‘ 𝑘 ∈ ℕ ( 𝑓𝑘 ) / 𝑛 𝐵 ) = 0 ↔ ( ( vol* ‘ 𝑘 ∈ ℕ ( 𝑓𝑘 ) / 𝑛 𝐵 ) ≤ 0 ∧ 0 ≤ ( vol* ‘ 𝑘 ∈ ℕ ( 𝑓𝑘 ) / 𝑛 𝐵 ) ) ) )
92 84 86 91 mpbir2and ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto𝐴 ) → ( vol* ‘ 𝑘 ∈ ℕ ( 𝑓𝑘 ) / 𝑛 𝐵 ) = 0 )
93 ovolssnul ( ( 𝑛𝐴 𝐵 𝑘 ∈ ℕ ( 𝑓𝑘 ) / 𝑛 𝐵 𝑘 ∈ ℕ ( 𝑓𝑘 ) / 𝑛 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝑘 ∈ ℕ ( 𝑓𝑘 ) / 𝑛 𝐵 ) = 0 ) → ( vol* ‘ 𝑛𝐴 𝐵 ) = 0 )
94 38 57 92 93 syl3anc ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto𝐴 ) → ( vol* ‘ 𝑛𝐴 𝐵 ) = 0 )
95 94 ex ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) → ( 𝑓 : ℕ –onto𝐴 → ( vol* ‘ 𝑛𝐴 𝐵 ) = 0 ) )
96 95 exlimdv ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) → ( ∃ 𝑓 𝑓 : ℕ –onto𝐴 → ( vol* ‘ 𝑛𝐴 𝐵 ) = 0 ) )
97 15 96 syld ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) → ( ∅ ≺ 𝐴 → ( vol* ‘ 𝑛𝐴 𝐵 ) = 0 ) )
98 12 97 sylbird ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) → ( 𝐴 ≠ ∅ → ( vol* ‘ 𝑛𝐴 𝐵 ) = 0 ) )
99 7 98 pm2.61dne ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) → ( vol* ‘ 𝑛𝐴 𝐵 ) = 0 )