| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stirlinglem1.1 | ⊢ 𝐻  =  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑛 ↑ 2 )  /  ( 𝑛  ·  ( ( 2  ·  𝑛 )  +  1 ) ) ) ) | 
						
							| 2 |  | stirlinglem1.2 | ⊢ 𝐹  =  ( 𝑛  ∈  ℕ  ↦  ( 1  −  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ) | 
						
							| 3 |  | stirlinglem1.3 | ⊢ 𝐺  =  ( 𝑛  ∈  ℕ  ↦  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 4 |  | stirlinglem1.4 | ⊢ 𝐿  =  ( 𝑛  ∈  ℕ  ↦  ( 1  /  𝑛 ) ) | 
						
							| 5 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 6 |  | 1zzd | ⊢ ( ⊤  →  1  ∈  ℤ ) | 
						
							| 7 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 8 |  | divcnv | ⊢ ( 1  ∈  ℂ  →  ( 𝑛  ∈  ℕ  ↦  ( 1  /  𝑛 ) )  ⇝  0 ) | 
						
							| 9 | 7 8 | ax-mp | ⊢ ( 𝑛  ∈  ℕ  ↦  ( 1  /  𝑛 ) )  ⇝  0 | 
						
							| 10 | 4 9 | eqbrtri | ⊢ 𝐿  ⇝  0 | 
						
							| 11 | 10 | a1i | ⊢ ( ⊤  →  𝐿  ⇝  0 ) | 
						
							| 12 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 13 | 12 | mptex | ⊢ ( 𝑛  ∈  ℕ  ↦  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) )  ∈  V | 
						
							| 14 | 3 13 | eqeltri | ⊢ 𝐺  ∈  V | 
						
							| 15 | 14 | a1i | ⊢ ( ⊤  →  𝐺  ∈  V ) | 
						
							| 16 | 4 | a1i | ⊢ ( 𝑘  ∈  ℕ  →  𝐿  =  ( 𝑛  ∈  ℕ  ↦  ( 1  /  𝑛 ) ) ) | 
						
							| 17 |  | simpr | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑛  =  𝑘 )  →  𝑛  =  𝑘 ) | 
						
							| 18 | 17 | oveq2d | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑛  =  𝑘 )  →  ( 1  /  𝑛 )  =  ( 1  /  𝑘 ) ) | 
						
							| 19 |  | id | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℕ ) | 
						
							| 20 |  | nnrp | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℝ+ ) | 
						
							| 21 | 20 | rpreccld | ⊢ ( 𝑘  ∈  ℕ  →  ( 1  /  𝑘 )  ∈  ℝ+ ) | 
						
							| 22 | 16 18 19 21 | fvmptd | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐿 ‘ 𝑘 )  =  ( 1  /  𝑘 ) ) | 
						
							| 23 |  | nnrecre | ⊢ ( 𝑘  ∈  ℕ  →  ( 1  /  𝑘 )  ∈  ℝ ) | 
						
							| 24 | 22 23 | eqeltrd | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐿 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝐿 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 26 | 3 | a1i | ⊢ ( 𝑘  ∈  ℕ  →  𝐺  =  ( 𝑛  ∈  ℕ  ↦  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ) | 
						
							| 27 | 17 | oveq2d | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑛  =  𝑘 )  →  ( 2  ·  𝑛 )  =  ( 2  ·  𝑘 ) ) | 
						
							| 28 | 27 | oveq1d | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑛  =  𝑘 )  →  ( ( 2  ·  𝑛 )  +  1 )  =  ( ( 2  ·  𝑘 )  +  1 ) ) | 
						
							| 29 | 28 | oveq2d | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑛  =  𝑘 )  →  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) )  =  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) | 
						
							| 30 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 31 | 30 | a1i | ⊢ ( 𝑘  ∈  ℕ  →  2  ∈  ℝ ) | 
						
							| 32 |  | nnre | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℝ ) | 
						
							| 33 | 31 32 | remulcld | ⊢ ( 𝑘  ∈  ℕ  →  ( 2  ·  𝑘 )  ∈  ℝ ) | 
						
							| 34 |  | 0le2 | ⊢ 0  ≤  2 | 
						
							| 35 | 34 | a1i | ⊢ ( 𝑘  ∈  ℕ  →  0  ≤  2 ) | 
						
							| 36 | 20 | rpge0d | ⊢ ( 𝑘  ∈  ℕ  →  0  ≤  𝑘 ) | 
						
							| 37 | 31 32 35 36 | mulge0d | ⊢ ( 𝑘  ∈  ℕ  →  0  ≤  ( 2  ·  𝑘 ) ) | 
						
							| 38 | 33 37 | ge0p1rpd | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 2  ·  𝑘 )  +  1 )  ∈  ℝ+ ) | 
						
							| 39 | 38 | rpreccld | ⊢ ( 𝑘  ∈  ℕ  →  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ∈  ℝ+ ) | 
						
							| 40 | 26 29 19 39 | fvmptd | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐺 ‘ 𝑘 )  =  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) | 
						
							| 41 | 39 | rpred | ⊢ ( 𝑘  ∈  ℕ  →  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ∈  ℝ ) | 
						
							| 42 | 40 41 | eqeltrd | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐺 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 43 | 42 | adantl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝐺 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 44 |  | 1red | ⊢ ( 𝑘  ∈  ℕ  →  1  ∈  ℝ ) | 
						
							| 45 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 46 | 45 | a1i | ⊢ ( 𝑘  ∈  ℕ  →  0  ≤  1 ) | 
						
							| 47 | 33 44 | readdcld | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 2  ·  𝑘 )  +  1 )  ∈  ℝ ) | 
						
							| 48 |  | nncn | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℂ ) | 
						
							| 49 | 48 | mullidd | ⊢ ( 𝑘  ∈  ℕ  →  ( 1  ·  𝑘 )  =  𝑘 ) | 
						
							| 50 |  | 1lt2 | ⊢ 1  <  2 | 
						
							| 51 | 50 | a1i | ⊢ ( 𝑘  ∈  ℕ  →  1  <  2 ) | 
						
							| 52 | 44 31 20 51 | ltmul1dd | ⊢ ( 𝑘  ∈  ℕ  →  ( 1  ·  𝑘 )  <  ( 2  ·  𝑘 ) ) | 
						
							| 53 | 49 52 | eqbrtrrd | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  <  ( 2  ·  𝑘 ) ) | 
						
							| 54 | 33 | ltp1d | ⊢ ( 𝑘  ∈  ℕ  →  ( 2  ·  𝑘 )  <  ( ( 2  ·  𝑘 )  +  1 ) ) | 
						
							| 55 | 32 33 47 53 54 | lttrd | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  <  ( ( 2  ·  𝑘 )  +  1 ) ) | 
						
							| 56 | 32 47 55 | ltled | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ≤  ( ( 2  ·  𝑘 )  +  1 ) ) | 
						
							| 57 | 20 38 44 46 56 | lediv2ad | ⊢ ( 𝑘  ∈  ℕ  →  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ≤  ( 1  /  𝑘 ) ) | 
						
							| 58 | 57 40 22 | 3brtr4d | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐺 ‘ 𝑘 )  ≤  ( 𝐿 ‘ 𝑘 ) ) | 
						
							| 59 | 58 | adantl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝐺 ‘ 𝑘 )  ≤  ( 𝐿 ‘ 𝑘 ) ) | 
						
							| 60 | 39 | rpge0d | ⊢ ( 𝑘  ∈  ℕ  →  0  ≤  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) | 
						
							| 61 | 60 40 | breqtrrd | ⊢ ( 𝑘  ∈  ℕ  →  0  ≤  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 62 | 61 | adantl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  0  ≤  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 63 | 5 6 11 15 25 43 59 62 | climsqz2 | ⊢ ( ⊤  →  𝐺  ⇝  0 ) | 
						
							| 64 |  | 1cnd | ⊢ ( ⊤  →  1  ∈  ℂ ) | 
						
							| 65 | 12 | mptex | ⊢ ( 𝑛  ∈  ℕ  ↦  ( 1  −  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) )  ∈  V | 
						
							| 66 | 2 65 | eqeltri | ⊢ 𝐹  ∈  V | 
						
							| 67 | 66 | a1i | ⊢ ( ⊤  →  𝐹  ∈  V ) | 
						
							| 68 | 43 | recnd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝐺 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 69 | 2 | a1i | ⊢ ( 𝑘  ∈  ℕ  →  𝐹  =  ( 𝑛  ∈  ℕ  ↦  ( 1  −  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ) ) | 
						
							| 70 | 29 | oveq2d | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑛  =  𝑘 )  →  ( 1  −  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) )  =  ( 1  −  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) ) | 
						
							| 71 |  | 1cnd | ⊢ ( 𝑘  ∈  ℕ  →  1  ∈  ℂ ) | 
						
							| 72 |  | 2cnd | ⊢ ( 𝑘  ∈  ℕ  →  2  ∈  ℂ ) | 
						
							| 73 | 72 48 | mulcld | ⊢ ( 𝑘  ∈  ℕ  →  ( 2  ·  𝑘 )  ∈  ℂ ) | 
						
							| 74 | 73 71 | addcld | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 2  ·  𝑘 )  +  1 )  ∈  ℂ ) | 
						
							| 75 | 38 | rpne0d | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 2  ·  𝑘 )  +  1 )  ≠  0 ) | 
						
							| 76 | 74 75 | reccld | ⊢ ( 𝑘  ∈  ℕ  →  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ∈  ℂ ) | 
						
							| 77 | 71 76 | subcld | ⊢ ( 𝑘  ∈  ℕ  →  ( 1  −  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) ) )  ∈  ℂ ) | 
						
							| 78 | 69 70 19 77 | fvmptd | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐹 ‘ 𝑘 )  =  ( 1  −  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) ) | 
						
							| 79 | 40 | eqcomd | ⊢ ( 𝑘  ∈  ℕ  →  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  =  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 80 | 79 | oveq2d | ⊢ ( 𝑘  ∈  ℕ  →  ( 1  −  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) ) )  =  ( 1  −  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 81 | 78 80 | eqtrd | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐹 ‘ 𝑘 )  =  ( 1  −  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 82 | 81 | adantl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  =  ( 1  −  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 83 | 5 6 63 64 67 68 82 | climsubc2 | ⊢ ( ⊤  →  𝐹  ⇝  ( 1  −  0 ) ) | 
						
							| 84 |  | 1m0e1 | ⊢ ( 1  −  0 )  =  1 | 
						
							| 85 | 83 84 | breqtrdi | ⊢ ( ⊤  →  𝐹  ⇝  1 ) | 
						
							| 86 | 64 | halfcld | ⊢ ( ⊤  →  ( 1  /  2 )  ∈  ℂ ) | 
						
							| 87 | 12 | mptex | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑛 ↑ 2 )  /  ( 𝑛  ·  ( ( 2  ·  𝑛 )  +  1 ) ) ) )  ∈  V | 
						
							| 88 | 1 87 | eqeltri | ⊢ 𝐻  ∈  V | 
						
							| 89 | 88 | a1i | ⊢ ( ⊤  →  𝐻  ∈  V ) | 
						
							| 90 | 78 77 | eqeltrd | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 91 | 90 | adantl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 92 |  | nncn | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℂ ) | 
						
							| 93 | 92 | sqcld | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛 ↑ 2 )  ∈  ℂ ) | 
						
							| 94 | 93 | mullidd | ⊢ ( 𝑛  ∈  ℕ  →  ( 1  ·  ( 𝑛 ↑ 2 ) )  =  ( 𝑛 ↑ 2 ) ) | 
						
							| 95 | 94 | eqcomd | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛 ↑ 2 )  =  ( 1  ·  ( 𝑛 ↑ 2 ) ) ) | 
						
							| 96 |  | 2cnd | ⊢ ( 𝑛  ∈  ℕ  →  2  ∈  ℂ ) | 
						
							| 97 | 96 92 | mulcld | ⊢ ( 𝑛  ∈  ℕ  →  ( 2  ·  𝑛 )  ∈  ℂ ) | 
						
							| 98 |  | 1cnd | ⊢ ( 𝑛  ∈  ℕ  →  1  ∈  ℂ ) | 
						
							| 99 | 92 97 98 | adddid | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  ·  ( ( 2  ·  𝑛 )  +  1 ) )  =  ( ( 𝑛  ·  ( 2  ·  𝑛 ) )  +  ( 𝑛  ·  1 ) ) ) | 
						
							| 100 | 92 96 92 | mul12d | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  ·  ( 2  ·  𝑛 ) )  =  ( 2  ·  ( 𝑛  ·  𝑛 ) ) ) | 
						
							| 101 | 92 | sqvald | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛 ↑ 2 )  =  ( 𝑛  ·  𝑛 ) ) | 
						
							| 102 | 101 | eqcomd | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  ·  𝑛 )  =  ( 𝑛 ↑ 2 ) ) | 
						
							| 103 | 102 | oveq2d | ⊢ ( 𝑛  ∈  ℕ  →  ( 2  ·  ( 𝑛  ·  𝑛 ) )  =  ( 2  ·  ( 𝑛 ↑ 2 ) ) ) | 
						
							| 104 | 100 103 | eqtrd | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  ·  ( 2  ·  𝑛 ) )  =  ( 2  ·  ( 𝑛 ↑ 2 ) ) ) | 
						
							| 105 | 92 | mulridd | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  ·  1 )  =  𝑛 ) | 
						
							| 106 | 104 105 | oveq12d | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑛  ·  ( 2  ·  𝑛 ) )  +  ( 𝑛  ·  1 ) )  =  ( ( 2  ·  ( 𝑛 ↑ 2 ) )  +  𝑛 ) ) | 
						
							| 107 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 108 | 107 | a1i | ⊢ ( 𝑛  ∈  ℕ  →  2  ≠  0 ) | 
						
							| 109 | 92 96 108 | divcan2d | ⊢ ( 𝑛  ∈  ℕ  →  ( 2  ·  ( 𝑛  /  2 ) )  =  𝑛 ) | 
						
							| 110 | 109 | eqcomd | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  =  ( 2  ·  ( 𝑛  /  2 ) ) ) | 
						
							| 111 | 110 | oveq2d | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 2  ·  ( 𝑛 ↑ 2 ) )  +  𝑛 )  =  ( ( 2  ·  ( 𝑛 ↑ 2 ) )  +  ( 2  ·  ( 𝑛  /  2 ) ) ) ) | 
						
							| 112 | 92 | halfcld | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  /  2 )  ∈  ℂ ) | 
						
							| 113 | 96 93 112 | adddid | ⊢ ( 𝑛  ∈  ℕ  →  ( 2  ·  ( ( 𝑛 ↑ 2 )  +  ( 𝑛  /  2 ) ) )  =  ( ( 2  ·  ( 𝑛 ↑ 2 ) )  +  ( 2  ·  ( 𝑛  /  2 ) ) ) ) | 
						
							| 114 | 111 113 | eqtr4d | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 2  ·  ( 𝑛 ↑ 2 ) )  +  𝑛 )  =  ( 2  ·  ( ( 𝑛 ↑ 2 )  +  ( 𝑛  /  2 ) ) ) ) | 
						
							| 115 | 99 106 114 | 3eqtrd | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  ·  ( ( 2  ·  𝑛 )  +  1 ) )  =  ( 2  ·  ( ( 𝑛 ↑ 2 )  +  ( 𝑛  /  2 ) ) ) ) | 
						
							| 116 | 95 115 | oveq12d | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑛 ↑ 2 )  /  ( 𝑛  ·  ( ( 2  ·  𝑛 )  +  1 ) ) )  =  ( ( 1  ·  ( 𝑛 ↑ 2 ) )  /  ( 2  ·  ( ( 𝑛 ↑ 2 )  +  ( 𝑛  /  2 ) ) ) ) ) | 
						
							| 117 | 93 112 | addcld | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑛 ↑ 2 )  +  ( 𝑛  /  2 ) )  ∈  ℂ ) | 
						
							| 118 |  | nnrp | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℝ+ ) | 
						
							| 119 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 120 | 119 | a1i | ⊢ ( 𝑛  ∈  ℕ  →  2  ∈  ℤ ) | 
						
							| 121 | 118 120 | rpexpcld | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛 ↑ 2 )  ∈  ℝ+ ) | 
						
							| 122 | 118 | rphalfcld | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  /  2 )  ∈  ℝ+ ) | 
						
							| 123 | 121 122 | rpaddcld | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑛 ↑ 2 )  +  ( 𝑛  /  2 ) )  ∈  ℝ+ ) | 
						
							| 124 | 123 | rpne0d | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑛 ↑ 2 )  +  ( 𝑛  /  2 ) )  ≠  0 ) | 
						
							| 125 | 98 96 93 117 108 124 | divmuldivd | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 1  /  2 )  ·  ( ( 𝑛 ↑ 2 )  /  ( ( 𝑛 ↑ 2 )  +  ( 𝑛  /  2 ) ) ) )  =  ( ( 1  ·  ( 𝑛 ↑ 2 ) )  /  ( 2  ·  ( ( 𝑛 ↑ 2 )  +  ( 𝑛  /  2 ) ) ) ) ) | 
						
							| 126 | 93 112 | pncand | ⊢ ( 𝑛  ∈  ℕ  →  ( ( ( 𝑛 ↑ 2 )  +  ( 𝑛  /  2 ) )  −  ( 𝑛  /  2 ) )  =  ( 𝑛 ↑ 2 ) ) | 
						
							| 127 | 126 | eqcomd | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛 ↑ 2 )  =  ( ( ( 𝑛 ↑ 2 )  +  ( 𝑛  /  2 ) )  −  ( 𝑛  /  2 ) ) ) | 
						
							| 128 | 127 | oveq1d | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑛 ↑ 2 )  /  ( ( 𝑛 ↑ 2 )  +  ( 𝑛  /  2 ) ) )  =  ( ( ( ( 𝑛 ↑ 2 )  +  ( 𝑛  /  2 ) )  −  ( 𝑛  /  2 ) )  /  ( ( 𝑛 ↑ 2 )  +  ( 𝑛  /  2 ) ) ) ) | 
						
							| 129 | 117 112 117 124 | divsubdird | ⊢ ( 𝑛  ∈  ℕ  →  ( ( ( ( 𝑛 ↑ 2 )  +  ( 𝑛  /  2 ) )  −  ( 𝑛  /  2 ) )  /  ( ( 𝑛 ↑ 2 )  +  ( 𝑛  /  2 ) ) )  =  ( ( ( ( 𝑛 ↑ 2 )  +  ( 𝑛  /  2 ) )  /  ( ( 𝑛 ↑ 2 )  +  ( 𝑛  /  2 ) ) )  −  ( ( 𝑛  /  2 )  /  ( ( 𝑛 ↑ 2 )  +  ( 𝑛  /  2 ) ) ) ) ) | 
						
							| 130 | 117 124 | dividd | ⊢ ( 𝑛  ∈  ℕ  →  ( ( ( 𝑛 ↑ 2 )  +  ( 𝑛  /  2 ) )  /  ( ( 𝑛 ↑ 2 )  +  ( 𝑛  /  2 ) ) )  =  1 ) | 
						
							| 131 | 130 | oveq1d | ⊢ ( 𝑛  ∈  ℕ  →  ( ( ( ( 𝑛 ↑ 2 )  +  ( 𝑛  /  2 ) )  /  ( ( 𝑛 ↑ 2 )  +  ( 𝑛  /  2 ) ) )  −  ( ( 𝑛  /  2 )  /  ( ( 𝑛 ↑ 2 )  +  ( 𝑛  /  2 ) ) ) )  =  ( 1  −  ( ( 𝑛  /  2 )  /  ( ( 𝑛 ↑ 2 )  +  ( 𝑛  /  2 ) ) ) ) ) | 
						
							| 132 | 128 129 131 | 3eqtrd | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑛 ↑ 2 )  /  ( ( 𝑛 ↑ 2 )  +  ( 𝑛  /  2 ) ) )  =  ( 1  −  ( ( 𝑛  /  2 )  /  ( ( 𝑛 ↑ 2 )  +  ( 𝑛  /  2 ) ) ) ) ) | 
						
							| 133 |  | nnne0 | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ≠  0 ) | 
						
							| 134 | 96 92 133 | divcld | ⊢ ( 𝑛  ∈  ℕ  →  ( 2  /  𝑛 )  ∈  ℂ ) | 
						
							| 135 | 96 92 108 133 | divne0d | ⊢ ( 𝑛  ∈  ℕ  →  ( 2  /  𝑛 )  ≠  0 ) | 
						
							| 136 | 112 117 134 124 135 | divcan5rd | ⊢ ( 𝑛  ∈  ℕ  →  ( ( ( 𝑛  /  2 )  ·  ( 2  /  𝑛 ) )  /  ( ( ( 𝑛 ↑ 2 )  +  ( 𝑛  /  2 ) )  ·  ( 2  /  𝑛 ) ) )  =  ( ( 𝑛  /  2 )  /  ( ( 𝑛 ↑ 2 )  +  ( 𝑛  /  2 ) ) ) ) | 
						
							| 137 | 92 96 133 108 | divcan6d | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑛  /  2 )  ·  ( 2  /  𝑛 ) )  =  1 ) | 
						
							| 138 | 93 112 134 | adddird | ⊢ ( 𝑛  ∈  ℕ  →  ( ( ( 𝑛 ↑ 2 )  +  ( 𝑛  /  2 ) )  ·  ( 2  /  𝑛 ) )  =  ( ( ( 𝑛 ↑ 2 )  ·  ( 2  /  𝑛 ) )  +  ( ( 𝑛  /  2 )  ·  ( 2  /  𝑛 ) ) ) ) | 
						
							| 139 | 93 96 92 133 | div12d | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑛 ↑ 2 )  ·  ( 2  /  𝑛 ) )  =  ( 2  ·  ( ( 𝑛 ↑ 2 )  /  𝑛 ) ) ) | 
						
							| 140 |  | 1e2m1 | ⊢ 1  =  ( 2  −  1 ) | 
						
							| 141 | 140 | oveq2i | ⊢ ( 𝑛 ↑ 1 )  =  ( 𝑛 ↑ ( 2  −  1 ) ) | 
						
							| 142 | 92 | exp1d | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛 ↑ 1 )  =  𝑛 ) | 
						
							| 143 | 92 133 120 | expm1d | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛 ↑ ( 2  −  1 ) )  =  ( ( 𝑛 ↑ 2 )  /  𝑛 ) ) | 
						
							| 144 | 141 142 143 | 3eqtr3a | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  =  ( ( 𝑛 ↑ 2 )  /  𝑛 ) ) | 
						
							| 145 | 144 | eqcomd | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑛 ↑ 2 )  /  𝑛 )  =  𝑛 ) | 
						
							| 146 | 145 | oveq2d | ⊢ ( 𝑛  ∈  ℕ  →  ( 2  ·  ( ( 𝑛 ↑ 2 )  /  𝑛 ) )  =  ( 2  ·  𝑛 ) ) | 
						
							| 147 | 139 146 | eqtrd | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑛 ↑ 2 )  ·  ( 2  /  𝑛 ) )  =  ( 2  ·  𝑛 ) ) | 
						
							| 148 | 147 137 | oveq12d | ⊢ ( 𝑛  ∈  ℕ  →  ( ( ( 𝑛 ↑ 2 )  ·  ( 2  /  𝑛 ) )  +  ( ( 𝑛  /  2 )  ·  ( 2  /  𝑛 ) ) )  =  ( ( 2  ·  𝑛 )  +  1 ) ) | 
						
							| 149 | 138 148 | eqtrd | ⊢ ( 𝑛  ∈  ℕ  →  ( ( ( 𝑛 ↑ 2 )  +  ( 𝑛  /  2 ) )  ·  ( 2  /  𝑛 ) )  =  ( ( 2  ·  𝑛 )  +  1 ) ) | 
						
							| 150 | 137 149 | oveq12d | ⊢ ( 𝑛  ∈  ℕ  →  ( ( ( 𝑛  /  2 )  ·  ( 2  /  𝑛 ) )  /  ( ( ( 𝑛 ↑ 2 )  +  ( 𝑛  /  2 ) )  ·  ( 2  /  𝑛 ) ) )  =  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 151 | 136 150 | eqtr3d | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑛  /  2 )  /  ( ( 𝑛 ↑ 2 )  +  ( 𝑛  /  2 ) ) )  =  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 152 | 151 | oveq2d | ⊢ ( 𝑛  ∈  ℕ  →  ( 1  −  ( ( 𝑛  /  2 )  /  ( ( 𝑛 ↑ 2 )  +  ( 𝑛  /  2 ) ) ) )  =  ( 1  −  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ) | 
						
							| 153 | 132 152 | eqtrd | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑛 ↑ 2 )  /  ( ( 𝑛 ↑ 2 )  +  ( 𝑛  /  2 ) ) )  =  ( 1  −  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ) | 
						
							| 154 | 153 | oveq2d | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 1  /  2 )  ·  ( ( 𝑛 ↑ 2 )  /  ( ( 𝑛 ↑ 2 )  +  ( 𝑛  /  2 ) ) ) )  =  ( ( 1  /  2 )  ·  ( 1  −  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ) ) | 
						
							| 155 | 116 125 154 | 3eqtr2d | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑛 ↑ 2 )  /  ( 𝑛  ·  ( ( 2  ·  𝑛 )  +  1 ) ) )  =  ( ( 1  /  2 )  ·  ( 1  −  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ) ) | 
						
							| 156 | 155 | mpteq2ia | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑛 ↑ 2 )  /  ( 𝑛  ·  ( ( 2  ·  𝑛 )  +  1 ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( 1  /  2 )  ·  ( 1  −  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ) ) | 
						
							| 157 | 1 156 | eqtri | ⊢ 𝐻  =  ( 𝑛  ∈  ℕ  ↦  ( ( 1  /  2 )  ·  ( 1  −  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ) ) | 
						
							| 158 | 157 | a1i | ⊢ ( 𝑘  ∈  ℕ  →  𝐻  =  ( 𝑛  ∈  ℕ  ↦  ( ( 1  /  2 )  ·  ( 1  −  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) ) ) ) | 
						
							| 159 | 70 | oveq2d | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑛  =  𝑘 )  →  ( ( 1  /  2 )  ·  ( 1  −  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) )  =  ( ( 1  /  2 )  ·  ( 1  −  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) ) ) | 
						
							| 160 | 71 | halfcld | ⊢ ( 𝑘  ∈  ℕ  →  ( 1  /  2 )  ∈  ℂ ) | 
						
							| 161 | 160 77 | mulcld | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 1  /  2 )  ·  ( 1  −  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) )  ∈  ℂ ) | 
						
							| 162 | 158 159 19 161 | fvmptd | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐻 ‘ 𝑘 )  =  ( ( 1  /  2 )  ·  ( 1  −  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) ) ) | 
						
							| 163 | 78 | oveq2d | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 1  /  2 )  ·  ( 𝐹 ‘ 𝑘 ) )  =  ( ( 1  /  2 )  ·  ( 1  −  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) ) ) | 
						
							| 164 | 162 163 | eqtr4d | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐻 ‘ 𝑘 )  =  ( ( 1  /  2 )  ·  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 165 | 164 | adantl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝐻 ‘ 𝑘 )  =  ( ( 1  /  2 )  ·  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 166 | 5 6 85 86 89 91 165 | climmulc2 | ⊢ ( ⊤  →  𝐻  ⇝  ( ( 1  /  2 )  ·  1 ) ) | 
						
							| 167 | 166 | mptru | ⊢ 𝐻  ⇝  ( ( 1  /  2 )  ·  1 ) | 
						
							| 168 |  | halfcn | ⊢ ( 1  /  2 )  ∈  ℂ | 
						
							| 169 | 168 | mulridi | ⊢ ( ( 1  /  2 )  ·  1 )  =  ( 1  /  2 ) | 
						
							| 170 | 167 169 | breqtri | ⊢ 𝐻  ⇝  ( 1  /  2 ) |