Step |
Hyp |
Ref |
Expression |
1 |
|
stirlinglem1.1 |
⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
2 |
|
stirlinglem1.2 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( 1 − ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
3 |
|
stirlinglem1.3 |
⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) |
4 |
|
stirlinglem1.4 |
⊢ 𝐿 = ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) |
5 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
6 |
|
1zzd |
⊢ ( ⊤ → 1 ∈ ℤ ) |
7 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
8 |
|
divcnv |
⊢ ( 1 ∈ ℂ → ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ⇝ 0 ) |
9 |
7 8
|
ax-mp |
⊢ ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ⇝ 0 |
10 |
4 9
|
eqbrtri |
⊢ 𝐿 ⇝ 0 |
11 |
10
|
a1i |
⊢ ( ⊤ → 𝐿 ⇝ 0 ) |
12 |
|
nnex |
⊢ ℕ ∈ V |
13 |
12
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ∈ V |
14 |
3 13
|
eqeltri |
⊢ 𝐺 ∈ V |
15 |
14
|
a1i |
⊢ ( ⊤ → 𝐺 ∈ V ) |
16 |
4
|
a1i |
⊢ ( 𝑘 ∈ ℕ → 𝐿 = ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ) |
17 |
|
simpr |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → 𝑛 = 𝑘 ) |
18 |
17
|
oveq2d |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( 1 / 𝑛 ) = ( 1 / 𝑘 ) ) |
19 |
|
id |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ ) |
20 |
|
nnrp |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ+ ) |
21 |
20
|
rpreccld |
⊢ ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℝ+ ) |
22 |
16 18 19 21
|
fvmptd |
⊢ ( 𝑘 ∈ ℕ → ( 𝐿 ‘ 𝑘 ) = ( 1 / 𝑘 ) ) |
23 |
|
nnrecre |
⊢ ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℝ ) |
24 |
22 23
|
eqeltrd |
⊢ ( 𝑘 ∈ ℕ → ( 𝐿 ‘ 𝑘 ) ∈ ℝ ) |
25 |
24
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐿 ‘ 𝑘 ) ∈ ℝ ) |
26 |
3
|
a1i |
⊢ ( 𝑘 ∈ ℕ → 𝐺 = ( 𝑛 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
27 |
17
|
oveq2d |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( 2 · 𝑛 ) = ( 2 · 𝑘 ) ) |
28 |
27
|
oveq1d |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( ( 2 · 𝑛 ) + 1 ) = ( ( 2 · 𝑘 ) + 1 ) ) |
29 |
28
|
oveq2d |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) = ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ) |
30 |
|
2re |
⊢ 2 ∈ ℝ |
31 |
30
|
a1i |
⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℝ ) |
32 |
|
nnre |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) |
33 |
31 32
|
remulcld |
⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ∈ ℝ ) |
34 |
|
0le2 |
⊢ 0 ≤ 2 |
35 |
34
|
a1i |
⊢ ( 𝑘 ∈ ℕ → 0 ≤ 2 ) |
36 |
20
|
rpge0d |
⊢ ( 𝑘 ∈ ℕ → 0 ≤ 𝑘 ) |
37 |
31 32 35 36
|
mulge0d |
⊢ ( 𝑘 ∈ ℕ → 0 ≤ ( 2 · 𝑘 ) ) |
38 |
33 37
|
ge0p1rpd |
⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) + 1 ) ∈ ℝ+ ) |
39 |
38
|
rpreccld |
⊢ ( 𝑘 ∈ ℕ → ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℝ+ ) |
40 |
26 29 19 39
|
fvmptd |
⊢ ( 𝑘 ∈ ℕ → ( 𝐺 ‘ 𝑘 ) = ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ) |
41 |
39
|
rpred |
⊢ ( 𝑘 ∈ ℕ → ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℝ ) |
42 |
40 41
|
eqeltrd |
⊢ ( 𝑘 ∈ ℕ → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
43 |
42
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
44 |
|
1red |
⊢ ( 𝑘 ∈ ℕ → 1 ∈ ℝ ) |
45 |
|
0le1 |
⊢ 0 ≤ 1 |
46 |
45
|
a1i |
⊢ ( 𝑘 ∈ ℕ → 0 ≤ 1 ) |
47 |
33 44
|
readdcld |
⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) + 1 ) ∈ ℝ ) |
48 |
|
nncn |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) |
49 |
48
|
mulid2d |
⊢ ( 𝑘 ∈ ℕ → ( 1 · 𝑘 ) = 𝑘 ) |
50 |
|
1lt2 |
⊢ 1 < 2 |
51 |
50
|
a1i |
⊢ ( 𝑘 ∈ ℕ → 1 < 2 ) |
52 |
44 31 20 51
|
ltmul1dd |
⊢ ( 𝑘 ∈ ℕ → ( 1 · 𝑘 ) < ( 2 · 𝑘 ) ) |
53 |
49 52
|
eqbrtrrd |
⊢ ( 𝑘 ∈ ℕ → 𝑘 < ( 2 · 𝑘 ) ) |
54 |
33
|
ltp1d |
⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) < ( ( 2 · 𝑘 ) + 1 ) ) |
55 |
32 33 47 53 54
|
lttrd |
⊢ ( 𝑘 ∈ ℕ → 𝑘 < ( ( 2 · 𝑘 ) + 1 ) ) |
56 |
32 47 55
|
ltled |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ≤ ( ( 2 · 𝑘 ) + 1 ) ) |
57 |
20 38 44 46 56
|
lediv2ad |
⊢ ( 𝑘 ∈ ℕ → ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ≤ ( 1 / 𝑘 ) ) |
58 |
57 40 22
|
3brtr4d |
⊢ ( 𝑘 ∈ ℕ → ( 𝐺 ‘ 𝑘 ) ≤ ( 𝐿 ‘ 𝑘 ) ) |
59 |
58
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ≤ ( 𝐿 ‘ 𝑘 ) ) |
60 |
39
|
rpge0d |
⊢ ( 𝑘 ∈ ℕ → 0 ≤ ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ) |
61 |
60 40
|
breqtrrd |
⊢ ( 𝑘 ∈ ℕ → 0 ≤ ( 𝐺 ‘ 𝑘 ) ) |
62 |
61
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( 𝐺 ‘ 𝑘 ) ) |
63 |
5 6 11 15 25 43 59 62
|
climsqz2 |
⊢ ( ⊤ → 𝐺 ⇝ 0 ) |
64 |
|
1cnd |
⊢ ( ⊤ → 1 ∈ ℂ ) |
65 |
12
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( 1 − ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ∈ V |
66 |
2 65
|
eqeltri |
⊢ 𝐹 ∈ V |
67 |
66
|
a1i |
⊢ ( ⊤ → 𝐹 ∈ V ) |
68 |
43
|
recnd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
69 |
2
|
a1i |
⊢ ( 𝑘 ∈ ℕ → 𝐹 = ( 𝑛 ∈ ℕ ↦ ( 1 − ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
70 |
29
|
oveq2d |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( 1 − ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) = ( 1 − ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
71 |
|
1cnd |
⊢ ( 𝑘 ∈ ℕ → 1 ∈ ℂ ) |
72 |
|
2cnd |
⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℂ ) |
73 |
72 48
|
mulcld |
⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ∈ ℂ ) |
74 |
73 71
|
addcld |
⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) + 1 ) ∈ ℂ ) |
75 |
38
|
rpne0d |
⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) + 1 ) ≠ 0 ) |
76 |
74 75
|
reccld |
⊢ ( 𝑘 ∈ ℕ → ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℂ ) |
77 |
71 76
|
subcld |
⊢ ( 𝑘 ∈ ℕ → ( 1 − ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ) ∈ ℂ ) |
78 |
69 70 19 77
|
fvmptd |
⊢ ( 𝑘 ∈ ℕ → ( 𝐹 ‘ 𝑘 ) = ( 1 − ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
79 |
40
|
eqcomd |
⊢ ( 𝑘 ∈ ℕ → ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) = ( 𝐺 ‘ 𝑘 ) ) |
80 |
79
|
oveq2d |
⊢ ( 𝑘 ∈ ℕ → ( 1 − ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ) = ( 1 − ( 𝐺 ‘ 𝑘 ) ) ) |
81 |
78 80
|
eqtrd |
⊢ ( 𝑘 ∈ ℕ → ( 𝐹 ‘ 𝑘 ) = ( 1 − ( 𝐺 ‘ 𝑘 ) ) ) |
82 |
81
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( 1 − ( 𝐺 ‘ 𝑘 ) ) ) |
83 |
5 6 63 64 67 68 82
|
climsubc2 |
⊢ ( ⊤ → 𝐹 ⇝ ( 1 − 0 ) ) |
84 |
|
1m0e1 |
⊢ ( 1 − 0 ) = 1 |
85 |
83 84
|
breqtrdi |
⊢ ( ⊤ → 𝐹 ⇝ 1 ) |
86 |
64
|
halfcld |
⊢ ( ⊤ → ( 1 / 2 ) ∈ ℂ ) |
87 |
12
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) ∈ V |
88 |
1 87
|
eqeltri |
⊢ 𝐻 ∈ V |
89 |
88
|
a1i |
⊢ ( ⊤ → 𝐻 ∈ V ) |
90 |
78 77
|
eqeltrd |
⊢ ( 𝑘 ∈ ℕ → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
91 |
90
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
92 |
|
nncn |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) |
93 |
92
|
sqcld |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ↑ 2 ) ∈ ℂ ) |
94 |
93
|
mulid2d |
⊢ ( 𝑛 ∈ ℕ → ( 1 · ( 𝑛 ↑ 2 ) ) = ( 𝑛 ↑ 2 ) ) |
95 |
94
|
eqcomd |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ↑ 2 ) = ( 1 · ( 𝑛 ↑ 2 ) ) ) |
96 |
|
2cnd |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℂ ) |
97 |
96 92
|
mulcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℂ ) |
98 |
|
1cnd |
⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℂ ) |
99 |
92 97 98
|
adddid |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) = ( ( 𝑛 · ( 2 · 𝑛 ) ) + ( 𝑛 · 1 ) ) ) |
100 |
92 96 92
|
mul12d |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 · ( 2 · 𝑛 ) ) = ( 2 · ( 𝑛 · 𝑛 ) ) ) |
101 |
92
|
sqvald |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ↑ 2 ) = ( 𝑛 · 𝑛 ) ) |
102 |
101
|
eqcomd |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 · 𝑛 ) = ( 𝑛 ↑ 2 ) ) |
103 |
102
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( 2 · ( 𝑛 · 𝑛 ) ) = ( 2 · ( 𝑛 ↑ 2 ) ) ) |
104 |
100 103
|
eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 · ( 2 · 𝑛 ) ) = ( 2 · ( 𝑛 ↑ 2 ) ) ) |
105 |
92
|
mulid1d |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 · 1 ) = 𝑛 ) |
106 |
104 105
|
oveq12d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 · ( 2 · 𝑛 ) ) + ( 𝑛 · 1 ) ) = ( ( 2 · ( 𝑛 ↑ 2 ) ) + 𝑛 ) ) |
107 |
|
2ne0 |
⊢ 2 ≠ 0 |
108 |
107
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 2 ≠ 0 ) |
109 |
92 96 108
|
divcan2d |
⊢ ( 𝑛 ∈ ℕ → ( 2 · ( 𝑛 / 2 ) ) = 𝑛 ) |
110 |
109
|
eqcomd |
⊢ ( 𝑛 ∈ ℕ → 𝑛 = ( 2 · ( 𝑛 / 2 ) ) ) |
111 |
110
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · ( 𝑛 ↑ 2 ) ) + 𝑛 ) = ( ( 2 · ( 𝑛 ↑ 2 ) ) + ( 2 · ( 𝑛 / 2 ) ) ) ) |
112 |
92
|
halfcld |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 / 2 ) ∈ ℂ ) |
113 |
96 93 112
|
adddid |
⊢ ( 𝑛 ∈ ℕ → ( 2 · ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) = ( ( 2 · ( 𝑛 ↑ 2 ) ) + ( 2 · ( 𝑛 / 2 ) ) ) ) |
114 |
111 113
|
eqtr4d |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · ( 𝑛 ↑ 2 ) ) + 𝑛 ) = ( 2 · ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) ) |
115 |
99 106 114
|
3eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) = ( 2 · ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) ) |
116 |
95 115
|
oveq12d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) = ( ( 1 · ( 𝑛 ↑ 2 ) ) / ( 2 · ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) ) ) |
117 |
93 112
|
addcld |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ∈ ℂ ) |
118 |
|
nnrp |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) |
119 |
|
2z |
⊢ 2 ∈ ℤ |
120 |
119
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℤ ) |
121 |
118 120
|
rpexpcld |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ↑ 2 ) ∈ ℝ+ ) |
122 |
118
|
rphalfcld |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 / 2 ) ∈ ℝ+ ) |
123 |
121 122
|
rpaddcld |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ∈ ℝ+ ) |
124 |
123
|
rpne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ≠ 0 ) |
125 |
98 96 93 117 108 124
|
divmuldivd |
⊢ ( 𝑛 ∈ ℕ → ( ( 1 / 2 ) · ( ( 𝑛 ↑ 2 ) / ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) ) = ( ( 1 · ( 𝑛 ↑ 2 ) ) / ( 2 · ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) ) ) |
126 |
93 112
|
pncand |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) − ( 𝑛 / 2 ) ) = ( 𝑛 ↑ 2 ) ) |
127 |
126
|
eqcomd |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ↑ 2 ) = ( ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) − ( 𝑛 / 2 ) ) ) |
128 |
127
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ 2 ) / ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) = ( ( ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) − ( 𝑛 / 2 ) ) / ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) ) |
129 |
117 112 117 124
|
divsubdird |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) − ( 𝑛 / 2 ) ) / ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) = ( ( ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) / ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) − ( ( 𝑛 / 2 ) / ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) ) ) |
130 |
117 124
|
dividd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) / ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) = 1 ) |
131 |
130
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) / ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) − ( ( 𝑛 / 2 ) / ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) ) = ( 1 − ( ( 𝑛 / 2 ) / ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) ) ) |
132 |
128 129 131
|
3eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ 2 ) / ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) = ( 1 − ( ( 𝑛 / 2 ) / ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) ) ) |
133 |
|
nnne0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ≠ 0 ) |
134 |
96 92 133
|
divcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 / 𝑛 ) ∈ ℂ ) |
135 |
96 92 108 133
|
divne0d |
⊢ ( 𝑛 ∈ ℕ → ( 2 / 𝑛 ) ≠ 0 ) |
136 |
112 117 134 124 135
|
divcan5rd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 / 2 ) · ( 2 / 𝑛 ) ) / ( ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) · ( 2 / 𝑛 ) ) ) = ( ( 𝑛 / 2 ) / ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) ) |
137 |
92 96 133 108
|
divcan6d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 / 2 ) · ( 2 / 𝑛 ) ) = 1 ) |
138 |
93 112 134
|
adddird |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) · ( 2 / 𝑛 ) ) = ( ( ( 𝑛 ↑ 2 ) · ( 2 / 𝑛 ) ) + ( ( 𝑛 / 2 ) · ( 2 / 𝑛 ) ) ) ) |
139 |
93 96 92 133
|
div12d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ 2 ) · ( 2 / 𝑛 ) ) = ( 2 · ( ( 𝑛 ↑ 2 ) / 𝑛 ) ) ) |
140 |
|
1e2m1 |
⊢ 1 = ( 2 − 1 ) |
141 |
140
|
oveq2i |
⊢ ( 𝑛 ↑ 1 ) = ( 𝑛 ↑ ( 2 − 1 ) ) |
142 |
92
|
exp1d |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ↑ 1 ) = 𝑛 ) |
143 |
92 133 120
|
expm1d |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ↑ ( 2 − 1 ) ) = ( ( 𝑛 ↑ 2 ) / 𝑛 ) ) |
144 |
141 142 143
|
3eqtr3a |
⊢ ( 𝑛 ∈ ℕ → 𝑛 = ( ( 𝑛 ↑ 2 ) / 𝑛 ) ) |
145 |
144
|
eqcomd |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ 2 ) / 𝑛 ) = 𝑛 ) |
146 |
145
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( 2 · ( ( 𝑛 ↑ 2 ) / 𝑛 ) ) = ( 2 · 𝑛 ) ) |
147 |
139 146
|
eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ 2 ) · ( 2 / 𝑛 ) ) = ( 2 · 𝑛 ) ) |
148 |
147 137
|
oveq12d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ↑ 2 ) · ( 2 / 𝑛 ) ) + ( ( 𝑛 / 2 ) · ( 2 / 𝑛 ) ) ) = ( ( 2 · 𝑛 ) + 1 ) ) |
149 |
138 148
|
eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) · ( 2 / 𝑛 ) ) = ( ( 2 · 𝑛 ) + 1 ) ) |
150 |
137 149
|
oveq12d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 / 2 ) · ( 2 / 𝑛 ) ) / ( ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) · ( 2 / 𝑛 ) ) ) = ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) |
151 |
136 150
|
eqtr3d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 / 2 ) / ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) = ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) |
152 |
151
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( 1 − ( ( 𝑛 / 2 ) / ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) ) = ( 1 − ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
153 |
132 152
|
eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ 2 ) / ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) = ( 1 − ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
154 |
153
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( ( 1 / 2 ) · ( ( 𝑛 ↑ 2 ) / ( ( 𝑛 ↑ 2 ) + ( 𝑛 / 2 ) ) ) ) = ( ( 1 / 2 ) · ( 1 − ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
155 |
116 125 154
|
3eqtr2d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) = ( ( 1 / 2 ) · ( 1 − ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
156 |
155
|
mpteq2ia |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 1 / 2 ) · ( 1 − ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
157 |
1 156
|
eqtri |
⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( ( 1 / 2 ) · ( 1 − ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
158 |
157
|
a1i |
⊢ ( 𝑘 ∈ ℕ → 𝐻 = ( 𝑛 ∈ ℕ ↦ ( ( 1 / 2 ) · ( 1 − ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) ) |
159 |
70
|
oveq2d |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( ( 1 / 2 ) · ( 1 − ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ) = ( ( 1 / 2 ) · ( 1 − ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ) ) ) |
160 |
71
|
halfcld |
⊢ ( 𝑘 ∈ ℕ → ( 1 / 2 ) ∈ ℂ ) |
161 |
160 77
|
mulcld |
⊢ ( 𝑘 ∈ ℕ → ( ( 1 / 2 ) · ( 1 − ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ) ) ∈ ℂ ) |
162 |
158 159 19 161
|
fvmptd |
⊢ ( 𝑘 ∈ ℕ → ( 𝐻 ‘ 𝑘 ) = ( ( 1 / 2 ) · ( 1 − ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ) ) ) |
163 |
78
|
oveq2d |
⊢ ( 𝑘 ∈ ℕ → ( ( 1 / 2 ) · ( 𝐹 ‘ 𝑘 ) ) = ( ( 1 / 2 ) · ( 1 − ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ) ) ) |
164 |
162 163
|
eqtr4d |
⊢ ( 𝑘 ∈ ℕ → ( 𝐻 ‘ 𝑘 ) = ( ( 1 / 2 ) · ( 𝐹 ‘ 𝑘 ) ) ) |
165 |
164
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐻 ‘ 𝑘 ) = ( ( 1 / 2 ) · ( 𝐹 ‘ 𝑘 ) ) ) |
166 |
5 6 85 86 89 91 165
|
climmulc2 |
⊢ ( ⊤ → 𝐻 ⇝ ( ( 1 / 2 ) · 1 ) ) |
167 |
166
|
mptru |
⊢ 𝐻 ⇝ ( ( 1 / 2 ) · 1 ) |
168 |
|
halfcn |
⊢ ( 1 / 2 ) ∈ ℂ |
169 |
168
|
mulid1i |
⊢ ( ( 1 / 2 ) · 1 ) = ( 1 / 2 ) |
170 |
167 169
|
breqtri |
⊢ 𝐻 ⇝ ( 1 / 2 ) |