| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tz9.1regs.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
sseq1 |
⊢ ( 𝑧 = 𝐴 → ( 𝑧 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑥 ) ) |
| 3 |
|
cleq1lem |
⊢ ( 𝑧 = 𝐴 → ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) ↔ ( 𝐴 ⊆ 𝑦 ∧ Tr 𝑦 ) ) ) |
| 4 |
3
|
imbi1d |
⊢ ( 𝑧 = 𝐴 → ( ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑥 ⊆ 𝑦 ) ↔ ( ( 𝐴 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑥 ⊆ 𝑦 ) ) ) |
| 5 |
4
|
albidv |
⊢ ( 𝑧 = 𝐴 → ( ∀ 𝑦 ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑥 ⊆ 𝑦 ) ↔ ∀ 𝑦 ( ( 𝐴 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑥 ⊆ 𝑦 ) ) ) |
| 6 |
2 5
|
3anbi13d |
⊢ ( 𝑧 = 𝐴 → ( ( 𝑧 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑥 ⊆ 𝑦 ) ) ↔ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝐴 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑥 ⊆ 𝑦 ) ) ) ) |
| 7 |
6
|
exbidv |
⊢ ( 𝑧 = 𝐴 → ( ∃ 𝑥 ( 𝑧 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑥 ⊆ 𝑦 ) ) ↔ ∃ 𝑥 ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝐴 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑥 ⊆ 𝑦 ) ) ) ) |
| 8 |
|
sseq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 ⊆ 𝑥 ↔ 𝑤 ⊆ 𝑥 ) ) |
| 9 |
|
cleq1lem |
⊢ ( 𝑧 = 𝑤 → ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) ↔ ( 𝑤 ⊆ 𝑦 ∧ Tr 𝑦 ) ) ) |
| 10 |
9
|
imbi1d |
⊢ ( 𝑧 = 𝑤 → ( ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑥 ⊆ 𝑦 ) ↔ ( ( 𝑤 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑥 ⊆ 𝑦 ) ) ) |
| 11 |
10
|
albidv |
⊢ ( 𝑧 = 𝑤 → ( ∀ 𝑦 ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑥 ⊆ 𝑦 ) ↔ ∀ 𝑦 ( ( 𝑤 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑥 ⊆ 𝑦 ) ) ) |
| 12 |
8 11
|
3anbi13d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝑧 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑥 ⊆ 𝑦 ) ) ↔ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝑤 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑥 ⊆ 𝑦 ) ) ) ) |
| 13 |
12
|
exbidv |
⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑥 ( 𝑧 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑥 ⊆ 𝑦 ) ) ↔ ∃ 𝑥 ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝑤 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑥 ⊆ 𝑦 ) ) ) ) |
| 14 |
|
vex |
⊢ 𝑧 ∈ V |
| 15 |
|
3simpa |
⊢ ( ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝑤 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑥 ⊆ 𝑦 ) ) → ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) ) |
| 16 |
15
|
eximi |
⊢ ( ∃ 𝑥 ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝑤 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑥 ⊆ 𝑦 ) ) → ∃ 𝑥 ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) ) |
| 17 |
|
intexab |
⊢ ( ∃ 𝑥 ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) ↔ ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ∈ V ) |
| 18 |
16 17
|
sylib |
⊢ ( ∃ 𝑥 ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝑤 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑥 ⊆ 𝑦 ) ) → ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ∈ V ) |
| 19 |
18
|
ralimi |
⊢ ( ∀ 𝑤 ∈ 𝑧 ∃ 𝑥 ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝑤 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑥 ⊆ 𝑦 ) ) → ∀ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ∈ V ) |
| 20 |
|
iunexg |
⊢ ( ( 𝑧 ∈ V ∧ ∀ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ∈ V ) → ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ∈ V ) |
| 21 |
14 19 20
|
sylancr |
⊢ ( ∀ 𝑤 ∈ 𝑧 ∃ 𝑥 ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝑤 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑥 ⊆ 𝑦 ) ) → ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ∈ V ) |
| 22 |
|
unexg |
⊢ ( ( 𝑧 ∈ V ∧ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ∈ V ) → ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) ∈ V ) |
| 23 |
14 21 22
|
sylancr |
⊢ ( ∀ 𝑤 ∈ 𝑧 ∃ 𝑥 ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝑤 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑥 ⊆ 𝑦 ) ) → ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) ∈ V ) |
| 24 |
|
ssun1 |
⊢ 𝑧 ⊆ ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
| 25 |
|
uniun |
⊢ ∪ ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) = ( ∪ 𝑧 ∪ ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
| 26 |
|
uniiun |
⊢ ∪ 𝑧 = ∪ 𝑤 ∈ 𝑧 𝑤 |
| 27 |
|
ssmin |
⊢ 𝑤 ⊆ ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } |
| 28 |
27
|
rgenw |
⊢ ∀ 𝑤 ∈ 𝑧 𝑤 ⊆ ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } |
| 29 |
|
ss2iun |
⊢ ( ∀ 𝑤 ∈ 𝑧 𝑤 ⊆ ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } → ∪ 𝑤 ∈ 𝑧 𝑤 ⊆ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
| 30 |
28 29
|
ax-mp |
⊢ ∪ 𝑤 ∈ 𝑧 𝑤 ⊆ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } |
| 31 |
26 30
|
eqsstri |
⊢ ∪ 𝑧 ⊆ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } |
| 32 |
|
ssun4 |
⊢ ( ∪ 𝑧 ⊆ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } → ∪ 𝑧 ⊆ ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) ) |
| 33 |
31 32
|
ax-mp |
⊢ ∪ 𝑧 ⊆ ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
| 34 |
|
trint |
⊢ ( ∀ 𝑦 ∈ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } Tr 𝑦 → Tr ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
| 35 |
|
sseq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑤 ⊆ 𝑥 ↔ 𝑤 ⊆ 𝑦 ) ) |
| 36 |
|
treq |
⊢ ( 𝑥 = 𝑦 → ( Tr 𝑥 ↔ Tr 𝑦 ) ) |
| 37 |
35 36
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) ↔ ( 𝑤 ⊆ 𝑦 ∧ Tr 𝑦 ) ) ) |
| 38 |
37
|
cbvabv |
⊢ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } = { 𝑦 ∣ ( 𝑤 ⊆ 𝑦 ∧ Tr 𝑦 ) } |
| 39 |
38
|
eqabri |
⊢ ( 𝑦 ∈ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ↔ ( 𝑤 ⊆ 𝑦 ∧ Tr 𝑦 ) ) |
| 40 |
39
|
simprbi |
⊢ ( 𝑦 ∈ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } → Tr 𝑦 ) |
| 41 |
34 40
|
mprg |
⊢ Tr ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } |
| 42 |
41
|
rgenw |
⊢ ∀ 𝑤 ∈ 𝑧 Tr ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } |
| 43 |
|
triun |
⊢ ( ∀ 𝑤 ∈ 𝑧 Tr ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } → Tr ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
| 44 |
42 43
|
ax-mp |
⊢ Tr ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } |
| 45 |
|
df-tr |
⊢ ( Tr ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ↔ ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
| 46 |
44 45
|
mpbi |
⊢ ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } |
| 47 |
|
ssun4 |
⊢ ( ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } → ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) ) |
| 48 |
46 47
|
ax-mp |
⊢ ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
| 49 |
33 48
|
unssi |
⊢ ( ∪ 𝑧 ∪ ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) ⊆ ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
| 50 |
25 49
|
eqsstri |
⊢ ∪ ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) ⊆ ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
| 51 |
|
df-tr |
⊢ ( Tr ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) ↔ ∪ ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) ⊆ ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) ) |
| 52 |
50 51
|
mpbir |
⊢ Tr ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
| 53 |
|
ssel |
⊢ ( 𝑧 ⊆ 𝑦 → ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) ) |
| 54 |
|
trss |
⊢ ( Tr 𝑦 → ( 𝑤 ∈ 𝑦 → 𝑤 ⊆ 𝑦 ) ) |
| 55 |
53 54
|
sylan9 |
⊢ ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) → ( 𝑤 ∈ 𝑧 → 𝑤 ⊆ 𝑦 ) ) |
| 56 |
|
simpr |
⊢ ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) → Tr 𝑦 ) |
| 57 |
55 56
|
jctird |
⊢ ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) → ( 𝑤 ∈ 𝑧 → ( 𝑤 ⊆ 𝑦 ∧ Tr 𝑦 ) ) ) |
| 58 |
|
rabab |
⊢ { 𝑥 ∈ V ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } = { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } |
| 59 |
58
|
inteqi |
⊢ ∩ { 𝑥 ∈ V ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } = ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } |
| 60 |
|
vex |
⊢ 𝑦 ∈ V |
| 61 |
37
|
intminss |
⊢ ( ( 𝑦 ∈ V ∧ ( 𝑤 ⊆ 𝑦 ∧ Tr 𝑦 ) ) → ∩ { 𝑥 ∈ V ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ 𝑦 ) |
| 62 |
60 61
|
mpan |
⊢ ( ( 𝑤 ⊆ 𝑦 ∧ Tr 𝑦 ) → ∩ { 𝑥 ∈ V ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ 𝑦 ) |
| 63 |
59 62
|
eqsstrrid |
⊢ ( ( 𝑤 ⊆ 𝑦 ∧ Tr 𝑦 ) → ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ 𝑦 ) |
| 64 |
57 63
|
syl6 |
⊢ ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) → ( 𝑤 ∈ 𝑧 → ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ 𝑦 ) ) |
| 65 |
64
|
ralrimiv |
⊢ ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) → ∀ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ 𝑦 ) |
| 66 |
|
iunss |
⊢ ( ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ 𝑦 ↔ ∀ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ 𝑦 ) |
| 67 |
65 66
|
sylibr |
⊢ ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) → ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ 𝑦 ) |
| 68 |
|
unss |
⊢ ( ( 𝑧 ⊆ 𝑦 ∧ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ 𝑦 ) ↔ ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) ⊆ 𝑦 ) |
| 69 |
68
|
biimpi |
⊢ ( ( 𝑧 ⊆ 𝑦 ∧ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ 𝑦 ) → ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) ⊆ 𝑦 ) |
| 70 |
67 69
|
syldan |
⊢ ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) → ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) ⊆ 𝑦 ) |
| 71 |
70
|
ax-gen |
⊢ ∀ 𝑦 ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) → ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) ⊆ 𝑦 ) |
| 72 |
24 52 71
|
3pm3.2i |
⊢ ( 𝑧 ⊆ ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) ∧ Tr ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) ∧ ∀ 𝑦 ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) → ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) ⊆ 𝑦 ) ) |
| 73 |
|
sseq2 |
⊢ ( 𝑢 = ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) → ( 𝑧 ⊆ 𝑢 ↔ 𝑧 ⊆ ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) ) ) |
| 74 |
|
treq |
⊢ ( 𝑢 = ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) → ( Tr 𝑢 ↔ Tr ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) ) ) |
| 75 |
|
sseq1 |
⊢ ( 𝑢 = ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) → ( 𝑢 ⊆ 𝑦 ↔ ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) ⊆ 𝑦 ) ) |
| 76 |
75
|
imbi2d |
⊢ ( 𝑢 = ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) → ( ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑢 ⊆ 𝑦 ) ↔ ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) → ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) ⊆ 𝑦 ) ) ) |
| 77 |
76
|
albidv |
⊢ ( 𝑢 = ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) → ( ∀ 𝑦 ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑢 ⊆ 𝑦 ) ↔ ∀ 𝑦 ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) → ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) ⊆ 𝑦 ) ) ) |
| 78 |
73 74 77
|
3anbi123d |
⊢ ( 𝑢 = ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) → ( ( 𝑧 ⊆ 𝑢 ∧ Tr 𝑢 ∧ ∀ 𝑦 ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑢 ⊆ 𝑦 ) ) ↔ ( 𝑧 ⊆ ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) ∧ Tr ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) ∧ ∀ 𝑦 ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) → ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) ⊆ 𝑦 ) ) ) ) |
| 79 |
78
|
spcegv |
⊢ ( ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) ∈ V → ( ( 𝑧 ⊆ ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) ∧ Tr ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) ∧ ∀ 𝑦 ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) → ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) ⊆ 𝑦 ) ) → ∃ 𝑢 ( 𝑧 ⊆ 𝑢 ∧ Tr 𝑢 ∧ ∀ 𝑦 ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑢 ⊆ 𝑦 ) ) ) ) |
| 80 |
|
sseq2 |
⊢ ( 𝑢 = 𝑥 → ( 𝑧 ⊆ 𝑢 ↔ 𝑧 ⊆ 𝑥 ) ) |
| 81 |
|
treq |
⊢ ( 𝑢 = 𝑥 → ( Tr 𝑢 ↔ Tr 𝑥 ) ) |
| 82 |
|
sseq1 |
⊢ ( 𝑢 = 𝑥 → ( 𝑢 ⊆ 𝑦 ↔ 𝑥 ⊆ 𝑦 ) ) |
| 83 |
82
|
imbi2d |
⊢ ( 𝑢 = 𝑥 → ( ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑢 ⊆ 𝑦 ) ↔ ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑥 ⊆ 𝑦 ) ) ) |
| 84 |
83
|
albidv |
⊢ ( 𝑢 = 𝑥 → ( ∀ 𝑦 ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑢 ⊆ 𝑦 ) ↔ ∀ 𝑦 ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑥 ⊆ 𝑦 ) ) ) |
| 85 |
80 81 84
|
3anbi123d |
⊢ ( 𝑢 = 𝑥 → ( ( 𝑧 ⊆ 𝑢 ∧ Tr 𝑢 ∧ ∀ 𝑦 ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑢 ⊆ 𝑦 ) ) ↔ ( 𝑧 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑥 ⊆ 𝑦 ) ) ) ) |
| 86 |
85
|
cbvexvw |
⊢ ( ∃ 𝑢 ( 𝑧 ⊆ 𝑢 ∧ Tr 𝑢 ∧ ∀ 𝑦 ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑢 ⊆ 𝑦 ) ) ↔ ∃ 𝑥 ( 𝑧 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑥 ⊆ 𝑦 ) ) ) |
| 87 |
79 86
|
imbitrdi |
⊢ ( ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) ∈ V → ( ( 𝑧 ⊆ ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) ∧ Tr ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) ∧ ∀ 𝑦 ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) → ( 𝑧 ∪ ∪ 𝑤 ∈ 𝑧 ∩ { 𝑥 ∣ ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) ⊆ 𝑦 ) ) → ∃ 𝑥 ( 𝑧 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑥 ⊆ 𝑦 ) ) ) ) |
| 88 |
23 72 87
|
mpisyl |
⊢ ( ∀ 𝑤 ∈ 𝑧 ∃ 𝑥 ( 𝑤 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝑤 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑥 ⊆ 𝑦 ) ) → ∃ 𝑥 ( 𝑧 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑥 ⊆ 𝑦 ) ) ) |
| 89 |
13 88
|
setinds2regs |
⊢ ∃ 𝑥 ( 𝑧 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝑧 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑥 ⊆ 𝑦 ) ) |
| 90 |
1 7 89
|
vtocl |
⊢ ∃ 𝑥 ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝐴 ⊆ 𝑦 ∧ Tr 𝑦 ) → 𝑥 ⊆ 𝑦 ) ) |