Metamath Proof Explorer


Theorem tz9.1regs

Description: Every set has a transitive closure (the smallest transitive extension). This version of tz9.1 depends on ax-regs instead of ax-reg and ax-inf2 . This suggests a possible answer to the third question posed in tz9.1 , namely that the missing property is that countably infinite classes must obey regularity. In ZF set theory we can prove this by showing that countably infinite classes are sets and thus ax-reg applies to them directly, but in a finitist context it seems that an axiom like ax-regs is required since countably infinite classes are proper classes. (Contributed by BTernaryTau, 31-Dec-2025)

Ref Expression
Hypothesis tz9.1regs.1 𝐴 ∈ V
Assertion tz9.1regs 𝑥 ( 𝐴𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝐴𝑦 ∧ Tr 𝑦 ) → 𝑥𝑦 ) )

Proof

Step Hyp Ref Expression
1 tz9.1regs.1 𝐴 ∈ V
2 sseq1 ( 𝑧 = 𝐴 → ( 𝑧𝑥𝐴𝑥 ) )
3 cleq1lem ( 𝑧 = 𝐴 → ( ( 𝑧𝑦 ∧ Tr 𝑦 ) ↔ ( 𝐴𝑦 ∧ Tr 𝑦 ) ) )
4 3 imbi1d ( 𝑧 = 𝐴 → ( ( ( 𝑧𝑦 ∧ Tr 𝑦 ) → 𝑥𝑦 ) ↔ ( ( 𝐴𝑦 ∧ Tr 𝑦 ) → 𝑥𝑦 ) ) )
5 4 albidv ( 𝑧 = 𝐴 → ( ∀ 𝑦 ( ( 𝑧𝑦 ∧ Tr 𝑦 ) → 𝑥𝑦 ) ↔ ∀ 𝑦 ( ( 𝐴𝑦 ∧ Tr 𝑦 ) → 𝑥𝑦 ) ) )
6 2 5 3anbi13d ( 𝑧 = 𝐴 → ( ( 𝑧𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝑧𝑦 ∧ Tr 𝑦 ) → 𝑥𝑦 ) ) ↔ ( 𝐴𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝐴𝑦 ∧ Tr 𝑦 ) → 𝑥𝑦 ) ) ) )
7 6 exbidv ( 𝑧 = 𝐴 → ( ∃ 𝑥 ( 𝑧𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝑧𝑦 ∧ Tr 𝑦 ) → 𝑥𝑦 ) ) ↔ ∃ 𝑥 ( 𝐴𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝐴𝑦 ∧ Tr 𝑦 ) → 𝑥𝑦 ) ) ) )
8 sseq1 ( 𝑧 = 𝑤 → ( 𝑧𝑥𝑤𝑥 ) )
9 cleq1lem ( 𝑧 = 𝑤 → ( ( 𝑧𝑦 ∧ Tr 𝑦 ) ↔ ( 𝑤𝑦 ∧ Tr 𝑦 ) ) )
10 9 imbi1d ( 𝑧 = 𝑤 → ( ( ( 𝑧𝑦 ∧ Tr 𝑦 ) → 𝑥𝑦 ) ↔ ( ( 𝑤𝑦 ∧ Tr 𝑦 ) → 𝑥𝑦 ) ) )
11 10 albidv ( 𝑧 = 𝑤 → ( ∀ 𝑦 ( ( 𝑧𝑦 ∧ Tr 𝑦 ) → 𝑥𝑦 ) ↔ ∀ 𝑦 ( ( 𝑤𝑦 ∧ Tr 𝑦 ) → 𝑥𝑦 ) ) )
12 8 11 3anbi13d ( 𝑧 = 𝑤 → ( ( 𝑧𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝑧𝑦 ∧ Tr 𝑦 ) → 𝑥𝑦 ) ) ↔ ( 𝑤𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝑤𝑦 ∧ Tr 𝑦 ) → 𝑥𝑦 ) ) ) )
13 12 exbidv ( 𝑧 = 𝑤 → ( ∃ 𝑥 ( 𝑧𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝑧𝑦 ∧ Tr 𝑦 ) → 𝑥𝑦 ) ) ↔ ∃ 𝑥 ( 𝑤𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝑤𝑦 ∧ Tr 𝑦 ) → 𝑥𝑦 ) ) ) )
14 vex 𝑧 ∈ V
15 3simpa ( ( 𝑤𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝑤𝑦 ∧ Tr 𝑦 ) → 𝑥𝑦 ) ) → ( 𝑤𝑥 ∧ Tr 𝑥 ) )
16 15 eximi ( ∃ 𝑥 ( 𝑤𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝑤𝑦 ∧ Tr 𝑦 ) → 𝑥𝑦 ) ) → ∃ 𝑥 ( 𝑤𝑥 ∧ Tr 𝑥 ) )
17 intexab ( ∃ 𝑥 ( 𝑤𝑥 ∧ Tr 𝑥 ) ↔ { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ∈ V )
18 16 17 sylib ( ∃ 𝑥 ( 𝑤𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝑤𝑦 ∧ Tr 𝑦 ) → 𝑥𝑦 ) ) → { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ∈ V )
19 18 ralimi ( ∀ 𝑤𝑧𝑥 ( 𝑤𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝑤𝑦 ∧ Tr 𝑦 ) → 𝑥𝑦 ) ) → ∀ 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ∈ V )
20 iunexg ( ( 𝑧 ∈ V ∧ ∀ 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ∈ V ) → 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ∈ V )
21 14 19 20 sylancr ( ∀ 𝑤𝑧𝑥 ( 𝑤𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝑤𝑦 ∧ Tr 𝑦 ) → 𝑥𝑦 ) ) → 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ∈ V )
22 unexg ( ( 𝑧 ∈ V ∧ 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ∈ V ) → ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) ∈ V )
23 14 21 22 sylancr ( ∀ 𝑤𝑧𝑥 ( 𝑤𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝑤𝑦 ∧ Tr 𝑦 ) → 𝑥𝑦 ) ) → ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) ∈ V )
24 ssun1 𝑧 ⊆ ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } )
25 uniun ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) = ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } )
26 uniiun 𝑧 = 𝑤𝑧 𝑤
27 ssmin 𝑤 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) }
28 27 rgenw 𝑤𝑧 𝑤 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) }
29 ss2iun ( ∀ 𝑤𝑧 𝑤 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } → 𝑤𝑧 𝑤 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } )
30 28 29 ax-mp 𝑤𝑧 𝑤 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) }
31 26 30 eqsstri 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) }
32 ssun4 ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } → 𝑧 ⊆ ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) )
33 31 32 ax-mp 𝑧 ⊆ ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } )
34 trint ( ∀ 𝑦 ∈ { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } Tr 𝑦 → Tr { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } )
35 sseq2 ( 𝑥 = 𝑦 → ( 𝑤𝑥𝑤𝑦 ) )
36 treq ( 𝑥 = 𝑦 → ( Tr 𝑥 ↔ Tr 𝑦 ) )
37 35 36 anbi12d ( 𝑥 = 𝑦 → ( ( 𝑤𝑥 ∧ Tr 𝑥 ) ↔ ( 𝑤𝑦 ∧ Tr 𝑦 ) ) )
38 37 cbvabv { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } = { 𝑦 ∣ ( 𝑤𝑦 ∧ Tr 𝑦 ) }
39 38 eqabri ( 𝑦 ∈ { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ↔ ( 𝑤𝑦 ∧ Tr 𝑦 ) )
40 39 simprbi ( 𝑦 ∈ { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } → Tr 𝑦 )
41 34 40 mprg Tr { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) }
42 41 rgenw 𝑤𝑧 Tr { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) }
43 triun ( ∀ 𝑤𝑧 Tr { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } → Tr 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } )
44 42 43 ax-mp Tr 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) }
45 df-tr ( Tr 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ↔ 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ⊆ 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } )
46 44 45 mpbi 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ⊆ 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) }
47 ssun4 ( 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ⊆ 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } → 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ⊆ ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) )
48 46 47 ax-mp 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ⊆ ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } )
49 33 48 unssi ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) ⊆ ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } )
50 25 49 eqsstri ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) ⊆ ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } )
51 df-tr ( Tr ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) ↔ ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) ⊆ ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) )
52 50 51 mpbir Tr ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } )
53 ssel ( 𝑧𝑦 → ( 𝑤𝑧𝑤𝑦 ) )
54 trss ( Tr 𝑦 → ( 𝑤𝑦𝑤𝑦 ) )
55 53 54 sylan9 ( ( 𝑧𝑦 ∧ Tr 𝑦 ) → ( 𝑤𝑧𝑤𝑦 ) )
56 simpr ( ( 𝑧𝑦 ∧ Tr 𝑦 ) → Tr 𝑦 )
57 55 56 jctird ( ( 𝑧𝑦 ∧ Tr 𝑦 ) → ( 𝑤𝑧 → ( 𝑤𝑦 ∧ Tr 𝑦 ) ) )
58 rabab { 𝑥 ∈ V ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } = { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) }
59 58 inteqi { 𝑥 ∈ V ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } = { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) }
60 vex 𝑦 ∈ V
61 37 intminss ( ( 𝑦 ∈ V ∧ ( 𝑤𝑦 ∧ Tr 𝑦 ) ) → { 𝑥 ∈ V ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ⊆ 𝑦 )
62 60 61 mpan ( ( 𝑤𝑦 ∧ Tr 𝑦 ) → { 𝑥 ∈ V ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ⊆ 𝑦 )
63 59 62 eqsstrrid ( ( 𝑤𝑦 ∧ Tr 𝑦 ) → { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ⊆ 𝑦 )
64 57 63 syl6 ( ( 𝑧𝑦 ∧ Tr 𝑦 ) → ( 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ⊆ 𝑦 ) )
65 64 ralrimiv ( ( 𝑧𝑦 ∧ Tr 𝑦 ) → ∀ 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ⊆ 𝑦 )
66 iunss ( 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ⊆ 𝑦 ↔ ∀ 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ⊆ 𝑦 )
67 65 66 sylibr ( ( 𝑧𝑦 ∧ Tr 𝑦 ) → 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ⊆ 𝑦 )
68 unss ( ( 𝑧𝑦 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ⊆ 𝑦 ) ↔ ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) ⊆ 𝑦 )
69 68 biimpi ( ( 𝑧𝑦 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ⊆ 𝑦 ) → ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) ⊆ 𝑦 )
70 67 69 syldan ( ( 𝑧𝑦 ∧ Tr 𝑦 ) → ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) ⊆ 𝑦 )
71 70 ax-gen 𝑦 ( ( 𝑧𝑦 ∧ Tr 𝑦 ) → ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) ⊆ 𝑦 )
72 24 52 71 3pm3.2i ( 𝑧 ⊆ ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) ∧ Tr ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) ∧ ∀ 𝑦 ( ( 𝑧𝑦 ∧ Tr 𝑦 ) → ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) ⊆ 𝑦 ) )
73 sseq2 ( 𝑢 = ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) → ( 𝑧𝑢𝑧 ⊆ ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) ) )
74 treq ( 𝑢 = ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) → ( Tr 𝑢 ↔ Tr ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) ) )
75 sseq1 ( 𝑢 = ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) → ( 𝑢𝑦 ↔ ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) ⊆ 𝑦 ) )
76 75 imbi2d ( 𝑢 = ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) → ( ( ( 𝑧𝑦 ∧ Tr 𝑦 ) → 𝑢𝑦 ) ↔ ( ( 𝑧𝑦 ∧ Tr 𝑦 ) → ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) ⊆ 𝑦 ) ) )
77 76 albidv ( 𝑢 = ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) → ( ∀ 𝑦 ( ( 𝑧𝑦 ∧ Tr 𝑦 ) → 𝑢𝑦 ) ↔ ∀ 𝑦 ( ( 𝑧𝑦 ∧ Tr 𝑦 ) → ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) ⊆ 𝑦 ) ) )
78 73 74 77 3anbi123d ( 𝑢 = ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) → ( ( 𝑧𝑢 ∧ Tr 𝑢 ∧ ∀ 𝑦 ( ( 𝑧𝑦 ∧ Tr 𝑦 ) → 𝑢𝑦 ) ) ↔ ( 𝑧 ⊆ ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) ∧ Tr ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) ∧ ∀ 𝑦 ( ( 𝑧𝑦 ∧ Tr 𝑦 ) → ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) ⊆ 𝑦 ) ) ) )
79 78 spcegv ( ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) ∈ V → ( ( 𝑧 ⊆ ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) ∧ Tr ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) ∧ ∀ 𝑦 ( ( 𝑧𝑦 ∧ Tr 𝑦 ) → ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) ⊆ 𝑦 ) ) → ∃ 𝑢 ( 𝑧𝑢 ∧ Tr 𝑢 ∧ ∀ 𝑦 ( ( 𝑧𝑦 ∧ Tr 𝑦 ) → 𝑢𝑦 ) ) ) )
80 sseq2 ( 𝑢 = 𝑥 → ( 𝑧𝑢𝑧𝑥 ) )
81 treq ( 𝑢 = 𝑥 → ( Tr 𝑢 ↔ Tr 𝑥 ) )
82 sseq1 ( 𝑢 = 𝑥 → ( 𝑢𝑦𝑥𝑦 ) )
83 82 imbi2d ( 𝑢 = 𝑥 → ( ( ( 𝑧𝑦 ∧ Tr 𝑦 ) → 𝑢𝑦 ) ↔ ( ( 𝑧𝑦 ∧ Tr 𝑦 ) → 𝑥𝑦 ) ) )
84 83 albidv ( 𝑢 = 𝑥 → ( ∀ 𝑦 ( ( 𝑧𝑦 ∧ Tr 𝑦 ) → 𝑢𝑦 ) ↔ ∀ 𝑦 ( ( 𝑧𝑦 ∧ Tr 𝑦 ) → 𝑥𝑦 ) ) )
85 80 81 84 3anbi123d ( 𝑢 = 𝑥 → ( ( 𝑧𝑢 ∧ Tr 𝑢 ∧ ∀ 𝑦 ( ( 𝑧𝑦 ∧ Tr 𝑦 ) → 𝑢𝑦 ) ) ↔ ( 𝑧𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝑧𝑦 ∧ Tr 𝑦 ) → 𝑥𝑦 ) ) ) )
86 85 cbvexvw ( ∃ 𝑢 ( 𝑧𝑢 ∧ Tr 𝑢 ∧ ∀ 𝑦 ( ( 𝑧𝑦 ∧ Tr 𝑦 ) → 𝑢𝑦 ) ) ↔ ∃ 𝑥 ( 𝑧𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝑧𝑦 ∧ Tr 𝑦 ) → 𝑥𝑦 ) ) )
87 79 86 imbitrdi ( ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) ∈ V → ( ( 𝑧 ⊆ ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) ∧ Tr ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) ∧ ∀ 𝑦 ( ( 𝑧𝑦 ∧ Tr 𝑦 ) → ( 𝑧 𝑤𝑧 { 𝑥 ∣ ( 𝑤𝑥 ∧ Tr 𝑥 ) } ) ⊆ 𝑦 ) ) → ∃ 𝑥 ( 𝑧𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝑧𝑦 ∧ Tr 𝑦 ) → 𝑥𝑦 ) ) ) )
88 23 72 87 mpisyl ( ∀ 𝑤𝑧𝑥 ( 𝑤𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝑤𝑦 ∧ Tr 𝑦 ) → 𝑥𝑦 ) ) → ∃ 𝑥 ( 𝑧𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝑧𝑦 ∧ Tr 𝑦 ) → 𝑥𝑦 ) ) )
89 13 88 setinds2regs 𝑥 ( 𝑧𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝑧𝑦 ∧ Tr 𝑦 ) → 𝑥𝑦 ) )
90 1 7 89 vtocl 𝑥 ( 𝐴𝑥 ∧ Tr 𝑥 ∧ ∀ 𝑦 ( ( 𝐴𝑦 ∧ Tr 𝑦 ) → 𝑥𝑦 ) )