| Step |
Hyp |
Ref |
Expression |
| 1 |
|
utoptop.1 |
⊢ 𝐽 = ( unifTop ‘ 𝑈 ) |
| 2 |
|
utopsnneip.1 |
⊢ 𝐾 = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) } |
| 3 |
|
utopsnneip.2 |
⊢ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ) |
| 4 |
|
utopval |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑝 ∈ 𝑎 ∃ 𝑤 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 } ) |
| 5 |
1 4
|
eqtrid |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝐽 = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑝 ∈ 𝑎 ∃ 𝑤 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 } ) |
| 6 |
|
simpll |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
| 7 |
|
simpr |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) → 𝑎 ∈ 𝒫 𝑋 ) |
| 8 |
7
|
elpwid |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) → 𝑎 ⊆ 𝑋 ) |
| 9 |
8
|
sselda |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) → 𝑝 ∈ 𝑋 ) |
| 10 |
|
simpr |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → 𝑝 ∈ 𝑋 ) |
| 11 |
|
mptexg |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ∈ V ) |
| 12 |
|
rnexg |
⊢ ( ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ∈ V → ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ∈ V ) |
| 13 |
11 12
|
syl |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ∈ V ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ∈ V ) |
| 15 |
3
|
fvmpt2 |
⊢ ( ( 𝑝 ∈ 𝑋 ∧ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ∈ V ) → ( 𝑁 ‘ 𝑝 ) = ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ) |
| 16 |
10 14 15
|
syl2anc |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ( 𝑁 ‘ 𝑝 ) = ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ) |
| 17 |
16
|
eleq2d |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ( 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ↔ 𝑎 ∈ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ) ) |
| 18 |
|
eqid |
⊢ ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) = ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) |
| 19 |
18
|
elrnmpt |
⊢ ( 𝑎 ∈ V → ( 𝑎 ∈ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ↔ ∃ 𝑣 ∈ 𝑈 𝑎 = ( 𝑣 “ { 𝑝 } ) ) ) |
| 20 |
19
|
elv |
⊢ ( 𝑎 ∈ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ↔ ∃ 𝑣 ∈ 𝑈 𝑎 = ( 𝑣 “ { 𝑝 } ) ) |
| 21 |
17 20
|
bitrdi |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ( 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑣 ∈ 𝑈 𝑎 = ( 𝑣 “ { 𝑝 } ) ) ) |
| 22 |
6 9 21
|
syl2anc |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) → ( 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑣 ∈ 𝑈 𝑎 = ( 𝑣 “ { 𝑝 } ) ) ) |
| 23 |
|
nfv |
⊢ Ⅎ 𝑣 ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) |
| 24 |
|
nfre1 |
⊢ Ⅎ 𝑣 ∃ 𝑣 ∈ 𝑈 𝑎 = ( 𝑣 “ { 𝑝 } ) |
| 25 |
23 24
|
nfan |
⊢ Ⅎ 𝑣 ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) ∧ ∃ 𝑣 ∈ 𝑈 𝑎 = ( 𝑣 “ { 𝑝 } ) ) |
| 26 |
|
simplr |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) ∧ ∃ 𝑣 ∈ 𝑈 𝑎 = ( 𝑣 “ { 𝑝 } ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑣 “ { 𝑝 } ) ) → 𝑣 ∈ 𝑈 ) |
| 27 |
|
eqimss2 |
⊢ ( 𝑎 = ( 𝑣 “ { 𝑝 } ) → ( 𝑣 “ { 𝑝 } ) ⊆ 𝑎 ) |
| 28 |
27
|
adantl |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) ∧ ∃ 𝑣 ∈ 𝑈 𝑎 = ( 𝑣 “ { 𝑝 } ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑣 “ { 𝑝 } ) ) → ( 𝑣 “ { 𝑝 } ) ⊆ 𝑎 ) |
| 29 |
|
imaeq1 |
⊢ ( 𝑤 = 𝑣 → ( 𝑤 “ { 𝑝 } ) = ( 𝑣 “ { 𝑝 } ) ) |
| 30 |
29
|
sseq1d |
⊢ ( 𝑤 = 𝑣 → ( ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ↔ ( 𝑣 “ { 𝑝 } ) ⊆ 𝑎 ) ) |
| 31 |
30
|
rspcev |
⊢ ( ( 𝑣 ∈ 𝑈 ∧ ( 𝑣 “ { 𝑝 } ) ⊆ 𝑎 ) → ∃ 𝑤 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ) |
| 32 |
26 28 31
|
syl2anc |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) ∧ ∃ 𝑣 ∈ 𝑈 𝑎 = ( 𝑣 “ { 𝑝 } ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑣 “ { 𝑝 } ) ) → ∃ 𝑤 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ) |
| 33 |
|
simpr |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) ∧ ∃ 𝑣 ∈ 𝑈 𝑎 = ( 𝑣 “ { 𝑝 } ) ) → ∃ 𝑣 ∈ 𝑈 𝑎 = ( 𝑣 “ { 𝑝 } ) ) |
| 34 |
25 32 33
|
r19.29af |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) ∧ ∃ 𝑣 ∈ 𝑈 𝑎 = ( 𝑣 “ { 𝑝 } ) ) → ∃ 𝑤 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ) |
| 35 |
6
|
ad2antrr |
⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
| 36 |
9
|
ad2antrr |
⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ) → 𝑝 ∈ 𝑋 ) |
| 37 |
35 36
|
jca |
⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ) → ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ) |
| 38 |
|
simpr |
⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ) → ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ) |
| 39 |
8
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ) → 𝑎 ⊆ 𝑋 ) |
| 40 |
|
simplr |
⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ) → 𝑤 ∈ 𝑈 ) |
| 41 |
|
eqid |
⊢ ( 𝑤 “ { 𝑝 } ) = ( 𝑤 “ { 𝑝 } ) |
| 42 |
|
imaeq1 |
⊢ ( 𝑢 = 𝑤 → ( 𝑢 “ { 𝑝 } ) = ( 𝑤 “ { 𝑝 } ) ) |
| 43 |
42
|
rspceeqv |
⊢ ( ( 𝑤 ∈ 𝑈 ∧ ( 𝑤 “ { 𝑝 } ) = ( 𝑤 “ { 𝑝 } ) ) → ∃ 𝑢 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) = ( 𝑢 “ { 𝑝 } ) ) |
| 44 |
41 43
|
mpan2 |
⊢ ( 𝑤 ∈ 𝑈 → ∃ 𝑢 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) = ( 𝑢 “ { 𝑝 } ) ) |
| 45 |
44
|
adantl |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) → ∃ 𝑢 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) = ( 𝑢 “ { 𝑝 } ) ) |
| 46 |
|
vex |
⊢ 𝑤 ∈ V |
| 47 |
46
|
imaex |
⊢ ( 𝑤 “ { 𝑝 } ) ∈ V |
| 48 |
3
|
ustuqtoplem |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ ( 𝑤 “ { 𝑝 } ) ∈ V ) → ( ( 𝑤 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑢 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) = ( 𝑢 “ { 𝑝 } ) ) ) |
| 49 |
47 48
|
mpan2 |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ( ( 𝑤 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑢 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) = ( 𝑢 “ { 𝑝 } ) ) ) |
| 50 |
49
|
adantr |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) → ( ( 𝑤 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑢 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) = ( 𝑢 “ { 𝑝 } ) ) ) |
| 51 |
45 50
|
mpbird |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) → ( 𝑤 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 52 |
35 36 40 51
|
syl21anc |
⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ) → ( 𝑤 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 53 |
|
sseq1 |
⊢ ( 𝑏 = ( 𝑤 “ { 𝑝 } ) → ( 𝑏 ⊆ 𝑎 ↔ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ) ) |
| 54 |
53
|
3anbi2d |
⊢ ( 𝑏 = ( 𝑤 “ { 𝑝 } ) → ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑏 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝑋 ) ↔ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ∧ 𝑎 ⊆ 𝑋 ) ) ) |
| 55 |
|
eleq1 |
⊢ ( 𝑏 = ( 𝑤 “ { 𝑝 } ) → ( 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ( 𝑤 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑝 ) ) ) |
| 56 |
54 55
|
anbi12d |
⊢ ( 𝑏 = ( 𝑤 “ { 𝑝 } ) → ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑏 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) ↔ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ∧ 𝑎 ⊆ 𝑋 ) ∧ ( 𝑤 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑝 ) ) ) ) |
| 57 |
56
|
imbi1d |
⊢ ( 𝑏 = ( 𝑤 “ { 𝑝 } ) → ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑏 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ↔ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ∧ 𝑎 ⊆ 𝑋 ) ∧ ( 𝑤 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ) ) |
| 58 |
3
|
ustuqtop1 |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑏 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 59 |
47 57 58
|
vtocl |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ∧ 𝑎 ⊆ 𝑋 ) ∧ ( 𝑤 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 60 |
37 38 39 52 59
|
syl31anc |
⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ) → 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 61 |
37 21
|
syl |
⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ) → ( 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑣 ∈ 𝑈 𝑎 = ( 𝑣 “ { 𝑝 } ) ) ) |
| 62 |
60 61
|
mpbid |
⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ) → ∃ 𝑣 ∈ 𝑈 𝑎 = ( 𝑣 “ { 𝑝 } ) ) |
| 63 |
62
|
r19.29an |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ) → ∃ 𝑣 ∈ 𝑈 𝑎 = ( 𝑣 “ { 𝑝 } ) ) |
| 64 |
34 63
|
impbida |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) → ( ∃ 𝑣 ∈ 𝑈 𝑎 = ( 𝑣 “ { 𝑝 } ) ↔ ∃ 𝑤 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ) ) |
| 65 |
22 64
|
bitrd |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) → ( 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑤 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ) ) |
| 66 |
65
|
ralbidva |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∀ 𝑝 ∈ 𝑎 ∃ 𝑤 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ) ) |
| 67 |
66
|
rabbidva |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) } = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑝 ∈ 𝑎 ∃ 𝑤 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 } ) |
| 68 |
5 67
|
eqtr4d |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝐽 = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) } ) |
| 69 |
68 2
|
eqtr4di |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝐽 = 𝐾 ) |
| 70 |
69
|
fveq2d |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( nei ‘ 𝐽 ) = ( nei ‘ 𝐾 ) ) |
| 71 |
70
|
fveq1d |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) = ( ( nei ‘ 𝐾 ) ‘ { 𝑃 } ) ) |
| 72 |
71
|
adantr |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) = ( ( nei ‘ 𝐾 ) ‘ { 𝑃 } ) ) |
| 73 |
3
|
ustuqtop0 |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑁 : 𝑋 ⟶ 𝒫 𝒫 𝑋 ) |
| 74 |
3
|
ustuqtop1 |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 75 |
3
|
ustuqtop2 |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ( fi ‘ ( 𝑁 ‘ 𝑝 ) ) ⊆ ( 𝑁 ‘ 𝑝 ) ) |
| 76 |
3
|
ustuqtop3 |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑝 ∈ 𝑎 ) |
| 77 |
3
|
ustuqtop4 |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → ∃ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ∀ 𝑞 ∈ 𝑏 𝑎 ∈ ( 𝑁 ‘ 𝑞 ) ) |
| 78 |
3
|
ustuqtop5 |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → 𝑋 ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 79 |
2 73 74 75 76 77 78
|
neiptopnei |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝐾 ) ‘ { 𝑝 } ) ) ) |
| 80 |
79
|
adantr |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝐾 ) ‘ { 𝑝 } ) ) ) |
| 81 |
|
simpr |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑝 = 𝑃 ) → 𝑝 = 𝑃 ) |
| 82 |
81
|
sneqd |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑝 = 𝑃 ) → { 𝑝 } = { 𝑃 } ) |
| 83 |
82
|
fveq2d |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑝 = 𝑃 ) → ( ( nei ‘ 𝐾 ) ‘ { 𝑝 } ) = ( ( nei ‘ 𝐾 ) ‘ { 𝑃 } ) ) |
| 84 |
|
simpr |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → 𝑃 ∈ 𝑋 ) |
| 85 |
|
fvexd |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( ( nei ‘ 𝐾 ) ‘ { 𝑃 } ) ∈ V ) |
| 86 |
80 83 84 85
|
fvmptd |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝑁 ‘ 𝑃 ) = ( ( nei ‘ 𝐾 ) ‘ { 𝑃 } ) ) |
| 87 |
|
mptexg |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V ) |
| 88 |
|
rnexg |
⊢ ( ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V → ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V ) |
| 89 |
87 88
|
syl |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V ) |
| 90 |
89
|
adantr |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V ) |
| 91 |
|
nfv |
⊢ Ⅎ 𝑣 𝑃 ∈ 𝑋 |
| 92 |
|
nfmpt1 |
⊢ Ⅎ 𝑣 ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) |
| 93 |
92
|
nfrn |
⊢ Ⅎ 𝑣 ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) |
| 94 |
93
|
nfel1 |
⊢ Ⅎ 𝑣 ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V |
| 95 |
91 94
|
nfan |
⊢ Ⅎ 𝑣 ( 𝑃 ∈ 𝑋 ∧ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V ) |
| 96 |
|
nfv |
⊢ Ⅎ 𝑣 𝑝 = 𝑃 |
| 97 |
95 96
|
nfan |
⊢ Ⅎ 𝑣 ( ( 𝑃 ∈ 𝑋 ∧ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V ) ∧ 𝑝 = 𝑃 ) |
| 98 |
|
simpr2 |
⊢ ( ( 𝑃 ∈ 𝑋 ∧ ( ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V ∧ 𝑝 = 𝑃 ∧ 𝑣 ∈ 𝑈 ) ) → 𝑝 = 𝑃 ) |
| 99 |
98
|
sneqd |
⊢ ( ( 𝑃 ∈ 𝑋 ∧ ( ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V ∧ 𝑝 = 𝑃 ∧ 𝑣 ∈ 𝑈 ) ) → { 𝑝 } = { 𝑃 } ) |
| 100 |
99
|
imaeq2d |
⊢ ( ( 𝑃 ∈ 𝑋 ∧ ( ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V ∧ 𝑝 = 𝑃 ∧ 𝑣 ∈ 𝑈 ) ) → ( 𝑣 “ { 𝑝 } ) = ( 𝑣 “ { 𝑃 } ) ) |
| 101 |
100
|
3anassrs |
⊢ ( ( ( ( 𝑃 ∈ 𝑋 ∧ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V ) ∧ 𝑝 = 𝑃 ) ∧ 𝑣 ∈ 𝑈 ) → ( 𝑣 “ { 𝑝 } ) = ( 𝑣 “ { 𝑃 } ) ) |
| 102 |
97 101
|
mpteq2da |
⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V ) ∧ 𝑝 = 𝑃 ) → ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) = ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ) |
| 103 |
102
|
rneqd |
⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V ) ∧ 𝑝 = 𝑃 ) → ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) = ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ) |
| 104 |
|
simpl |
⊢ ( ( 𝑃 ∈ 𝑋 ∧ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V ) → 𝑃 ∈ 𝑋 ) |
| 105 |
|
simpr |
⊢ ( ( 𝑃 ∈ 𝑋 ∧ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V ) → ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V ) |
| 106 |
3 103 104 105
|
fvmptd2 |
⊢ ( ( 𝑃 ∈ 𝑋 ∧ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V ) → ( 𝑁 ‘ 𝑃 ) = ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ) |
| 107 |
84 90 106
|
syl2anc |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝑁 ‘ 𝑃 ) = ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ) |
| 108 |
72 86 107
|
3eqtr2d |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) = ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ) |