| Step |
Hyp |
Ref |
Expression |
| 1 |
|
utoptop.1 |
|- J = ( unifTop ` U ) |
| 2 |
|
utopsnneip.1 |
|- K = { a e. ~P X | A. p e. a a e. ( N ` p ) } |
| 3 |
|
utopsnneip.2 |
|- N = ( p e. X |-> ran ( v e. U |-> ( v " { p } ) ) ) |
| 4 |
|
utopval |
|- ( U e. ( UnifOn ` X ) -> ( unifTop ` U ) = { a e. ~P X | A. p e. a E. w e. U ( w " { p } ) C_ a } ) |
| 5 |
1 4
|
eqtrid |
|- ( U e. ( UnifOn ` X ) -> J = { a e. ~P X | A. p e. a E. w e. U ( w " { p } ) C_ a } ) |
| 6 |
|
simpll |
|- ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) -> U e. ( UnifOn ` X ) ) |
| 7 |
|
simpr |
|- ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) -> a e. ~P X ) |
| 8 |
7
|
elpwid |
|- ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) -> a C_ X ) |
| 9 |
8
|
sselda |
|- ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) -> p e. X ) |
| 10 |
|
simpr |
|- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> p e. X ) |
| 11 |
|
mptexg |
|- ( U e. ( UnifOn ` X ) -> ( v e. U |-> ( v " { p } ) ) e. _V ) |
| 12 |
|
rnexg |
|- ( ( v e. U |-> ( v " { p } ) ) e. _V -> ran ( v e. U |-> ( v " { p } ) ) e. _V ) |
| 13 |
11 12
|
syl |
|- ( U e. ( UnifOn ` X ) -> ran ( v e. U |-> ( v " { p } ) ) e. _V ) |
| 14 |
13
|
adantr |
|- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> ran ( v e. U |-> ( v " { p } ) ) e. _V ) |
| 15 |
3
|
fvmpt2 |
|- ( ( p e. X /\ ran ( v e. U |-> ( v " { p } ) ) e. _V ) -> ( N ` p ) = ran ( v e. U |-> ( v " { p } ) ) ) |
| 16 |
10 14 15
|
syl2anc |
|- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> ( N ` p ) = ran ( v e. U |-> ( v " { p } ) ) ) |
| 17 |
16
|
eleq2d |
|- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> ( a e. ( N ` p ) <-> a e. ran ( v e. U |-> ( v " { p } ) ) ) ) |
| 18 |
|
eqid |
|- ( v e. U |-> ( v " { p } ) ) = ( v e. U |-> ( v " { p } ) ) |
| 19 |
18
|
elrnmpt |
|- ( a e. _V -> ( a e. ran ( v e. U |-> ( v " { p } ) ) <-> E. v e. U a = ( v " { p } ) ) ) |
| 20 |
19
|
elv |
|- ( a e. ran ( v e. U |-> ( v " { p } ) ) <-> E. v e. U a = ( v " { p } ) ) |
| 21 |
17 20
|
bitrdi |
|- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> ( a e. ( N ` p ) <-> E. v e. U a = ( v " { p } ) ) ) |
| 22 |
6 9 21
|
syl2anc |
|- ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) -> ( a e. ( N ` p ) <-> E. v e. U a = ( v " { p } ) ) ) |
| 23 |
|
nfv |
|- F/ v ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) |
| 24 |
|
nfre1 |
|- F/ v E. v e. U a = ( v " { p } ) |
| 25 |
23 24
|
nfan |
|- F/ v ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) /\ E. v e. U a = ( v " { p } ) ) |
| 26 |
|
simplr |
|- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) /\ E. v e. U a = ( v " { p } ) ) /\ v e. U ) /\ a = ( v " { p } ) ) -> v e. U ) |
| 27 |
|
eqimss2 |
|- ( a = ( v " { p } ) -> ( v " { p } ) C_ a ) |
| 28 |
27
|
adantl |
|- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) /\ E. v e. U a = ( v " { p } ) ) /\ v e. U ) /\ a = ( v " { p } ) ) -> ( v " { p } ) C_ a ) |
| 29 |
|
imaeq1 |
|- ( w = v -> ( w " { p } ) = ( v " { p } ) ) |
| 30 |
29
|
sseq1d |
|- ( w = v -> ( ( w " { p } ) C_ a <-> ( v " { p } ) C_ a ) ) |
| 31 |
30
|
rspcev |
|- ( ( v e. U /\ ( v " { p } ) C_ a ) -> E. w e. U ( w " { p } ) C_ a ) |
| 32 |
26 28 31
|
syl2anc |
|- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) /\ E. v e. U a = ( v " { p } ) ) /\ v e. U ) /\ a = ( v " { p } ) ) -> E. w e. U ( w " { p } ) C_ a ) |
| 33 |
|
simpr |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) /\ E. v e. U a = ( v " { p } ) ) -> E. v e. U a = ( v " { p } ) ) |
| 34 |
25 32 33
|
r19.29af |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) /\ E. v e. U a = ( v " { p } ) ) -> E. w e. U ( w " { p } ) C_ a ) |
| 35 |
6
|
ad2antrr |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) /\ w e. U ) /\ ( w " { p } ) C_ a ) -> U e. ( UnifOn ` X ) ) |
| 36 |
9
|
ad2antrr |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) /\ w e. U ) /\ ( w " { p } ) C_ a ) -> p e. X ) |
| 37 |
35 36
|
jca |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) /\ w e. U ) /\ ( w " { p } ) C_ a ) -> ( U e. ( UnifOn ` X ) /\ p e. X ) ) |
| 38 |
|
simpr |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) /\ w e. U ) /\ ( w " { p } ) C_ a ) -> ( w " { p } ) C_ a ) |
| 39 |
8
|
ad3antrrr |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) /\ w e. U ) /\ ( w " { p } ) C_ a ) -> a C_ X ) |
| 40 |
|
simplr |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) /\ w e. U ) /\ ( w " { p } ) C_ a ) -> w e. U ) |
| 41 |
|
eqid |
|- ( w " { p } ) = ( w " { p } ) |
| 42 |
|
imaeq1 |
|- ( u = w -> ( u " { p } ) = ( w " { p } ) ) |
| 43 |
42
|
rspceeqv |
|- ( ( w e. U /\ ( w " { p } ) = ( w " { p } ) ) -> E. u e. U ( w " { p } ) = ( u " { p } ) ) |
| 44 |
41 43
|
mpan2 |
|- ( w e. U -> E. u e. U ( w " { p } ) = ( u " { p } ) ) |
| 45 |
44
|
adantl |
|- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ w e. U ) -> E. u e. U ( w " { p } ) = ( u " { p } ) ) |
| 46 |
|
vex |
|- w e. _V |
| 47 |
46
|
imaex |
|- ( w " { p } ) e. _V |
| 48 |
3
|
ustuqtoplem |
|- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ ( w " { p } ) e. _V ) -> ( ( w " { p } ) e. ( N ` p ) <-> E. u e. U ( w " { p } ) = ( u " { p } ) ) ) |
| 49 |
47 48
|
mpan2 |
|- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> ( ( w " { p } ) e. ( N ` p ) <-> E. u e. U ( w " { p } ) = ( u " { p } ) ) ) |
| 50 |
49
|
adantr |
|- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ w e. U ) -> ( ( w " { p } ) e. ( N ` p ) <-> E. u e. U ( w " { p } ) = ( u " { p } ) ) ) |
| 51 |
45 50
|
mpbird |
|- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ w e. U ) -> ( w " { p } ) e. ( N ` p ) ) |
| 52 |
35 36 40 51
|
syl21anc |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) /\ w e. U ) /\ ( w " { p } ) C_ a ) -> ( w " { p } ) e. ( N ` p ) ) |
| 53 |
|
sseq1 |
|- ( b = ( w " { p } ) -> ( b C_ a <-> ( w " { p } ) C_ a ) ) |
| 54 |
53
|
3anbi2d |
|- ( b = ( w " { p } ) -> ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ b C_ a /\ a C_ X ) <-> ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ ( w " { p } ) C_ a /\ a C_ X ) ) ) |
| 55 |
|
eleq1 |
|- ( b = ( w " { p } ) -> ( b e. ( N ` p ) <-> ( w " { p } ) e. ( N ` p ) ) ) |
| 56 |
54 55
|
anbi12d |
|- ( b = ( w " { p } ) -> ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ b C_ a /\ a C_ X ) /\ b e. ( N ` p ) ) <-> ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ ( w " { p } ) C_ a /\ a C_ X ) /\ ( w " { p } ) e. ( N ` p ) ) ) ) |
| 57 |
56
|
imbi1d |
|- ( b = ( w " { p } ) -> ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ b C_ a /\ a C_ X ) /\ b e. ( N ` p ) ) -> a e. ( N ` p ) ) <-> ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ ( w " { p } ) C_ a /\ a C_ X ) /\ ( w " { p } ) e. ( N ` p ) ) -> a e. ( N ` p ) ) ) ) |
| 58 |
3
|
ustuqtop1 |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ b C_ a /\ a C_ X ) /\ b e. ( N ` p ) ) -> a e. ( N ` p ) ) |
| 59 |
47 57 58
|
vtocl |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ ( w " { p } ) C_ a /\ a C_ X ) /\ ( w " { p } ) e. ( N ` p ) ) -> a e. ( N ` p ) ) |
| 60 |
37 38 39 52 59
|
syl31anc |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) /\ w e. U ) /\ ( w " { p } ) C_ a ) -> a e. ( N ` p ) ) |
| 61 |
37 21
|
syl |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) /\ w e. U ) /\ ( w " { p } ) C_ a ) -> ( a e. ( N ` p ) <-> E. v e. U a = ( v " { p } ) ) ) |
| 62 |
60 61
|
mpbid |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) /\ w e. U ) /\ ( w " { p } ) C_ a ) -> E. v e. U a = ( v " { p } ) ) |
| 63 |
62
|
r19.29an |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) /\ E. w e. U ( w " { p } ) C_ a ) -> E. v e. U a = ( v " { p } ) ) |
| 64 |
34 63
|
impbida |
|- ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) -> ( E. v e. U a = ( v " { p } ) <-> E. w e. U ( w " { p } ) C_ a ) ) |
| 65 |
22 64
|
bitrd |
|- ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) -> ( a e. ( N ` p ) <-> E. w e. U ( w " { p } ) C_ a ) ) |
| 66 |
65
|
ralbidva |
|- ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) -> ( A. p e. a a e. ( N ` p ) <-> A. p e. a E. w e. U ( w " { p } ) C_ a ) ) |
| 67 |
66
|
rabbidva |
|- ( U e. ( UnifOn ` X ) -> { a e. ~P X | A. p e. a a e. ( N ` p ) } = { a e. ~P X | A. p e. a E. w e. U ( w " { p } ) C_ a } ) |
| 68 |
5 67
|
eqtr4d |
|- ( U e. ( UnifOn ` X ) -> J = { a e. ~P X | A. p e. a a e. ( N ` p ) } ) |
| 69 |
68 2
|
eqtr4di |
|- ( U e. ( UnifOn ` X ) -> J = K ) |
| 70 |
69
|
fveq2d |
|- ( U e. ( UnifOn ` X ) -> ( nei ` J ) = ( nei ` K ) ) |
| 71 |
70
|
fveq1d |
|- ( U e. ( UnifOn ` X ) -> ( ( nei ` J ) ` { P } ) = ( ( nei ` K ) ` { P } ) ) |
| 72 |
71
|
adantr |
|- ( ( U e. ( UnifOn ` X ) /\ P e. X ) -> ( ( nei ` J ) ` { P } ) = ( ( nei ` K ) ` { P } ) ) |
| 73 |
3
|
ustuqtop0 |
|- ( U e. ( UnifOn ` X ) -> N : X --> ~P ~P X ) |
| 74 |
3
|
ustuqtop1 |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ a e. ( N ` p ) ) -> b e. ( N ` p ) ) |
| 75 |
3
|
ustuqtop2 |
|- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> ( fi ` ( N ` p ) ) C_ ( N ` p ) ) |
| 76 |
3
|
ustuqtop3 |
|- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) -> p e. a ) |
| 77 |
3
|
ustuqtop4 |
|- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) -> E. b e. ( N ` p ) A. q e. b a e. ( N ` q ) ) |
| 78 |
3
|
ustuqtop5 |
|- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> X e. ( N ` p ) ) |
| 79 |
2 73 74 75 76 77 78
|
neiptopnei |
|- ( U e. ( UnifOn ` X ) -> N = ( p e. X |-> ( ( nei ` K ) ` { p } ) ) ) |
| 80 |
79
|
adantr |
|- ( ( U e. ( UnifOn ` X ) /\ P e. X ) -> N = ( p e. X |-> ( ( nei ` K ) ` { p } ) ) ) |
| 81 |
|
simpr |
|- ( ( ( U e. ( UnifOn ` X ) /\ P e. X ) /\ p = P ) -> p = P ) |
| 82 |
81
|
sneqd |
|- ( ( ( U e. ( UnifOn ` X ) /\ P e. X ) /\ p = P ) -> { p } = { P } ) |
| 83 |
82
|
fveq2d |
|- ( ( ( U e. ( UnifOn ` X ) /\ P e. X ) /\ p = P ) -> ( ( nei ` K ) ` { p } ) = ( ( nei ` K ) ` { P } ) ) |
| 84 |
|
simpr |
|- ( ( U e. ( UnifOn ` X ) /\ P e. X ) -> P e. X ) |
| 85 |
|
fvexd |
|- ( ( U e. ( UnifOn ` X ) /\ P e. X ) -> ( ( nei ` K ) ` { P } ) e. _V ) |
| 86 |
80 83 84 85
|
fvmptd |
|- ( ( U e. ( UnifOn ` X ) /\ P e. X ) -> ( N ` P ) = ( ( nei ` K ) ` { P } ) ) |
| 87 |
|
mptexg |
|- ( U e. ( UnifOn ` X ) -> ( v e. U |-> ( v " { P } ) ) e. _V ) |
| 88 |
|
rnexg |
|- ( ( v e. U |-> ( v " { P } ) ) e. _V -> ran ( v e. U |-> ( v " { P } ) ) e. _V ) |
| 89 |
87 88
|
syl |
|- ( U e. ( UnifOn ` X ) -> ran ( v e. U |-> ( v " { P } ) ) e. _V ) |
| 90 |
89
|
adantr |
|- ( ( U e. ( UnifOn ` X ) /\ P e. X ) -> ran ( v e. U |-> ( v " { P } ) ) e. _V ) |
| 91 |
|
nfv |
|- F/ v P e. X |
| 92 |
|
nfmpt1 |
|- F/_ v ( v e. U |-> ( v " { P } ) ) |
| 93 |
92
|
nfrn |
|- F/_ v ran ( v e. U |-> ( v " { P } ) ) |
| 94 |
93
|
nfel1 |
|- F/ v ran ( v e. U |-> ( v " { P } ) ) e. _V |
| 95 |
91 94
|
nfan |
|- F/ v ( P e. X /\ ran ( v e. U |-> ( v " { P } ) ) e. _V ) |
| 96 |
|
nfv |
|- F/ v p = P |
| 97 |
95 96
|
nfan |
|- F/ v ( ( P e. X /\ ran ( v e. U |-> ( v " { P } ) ) e. _V ) /\ p = P ) |
| 98 |
|
simpr2 |
|- ( ( P e. X /\ ( ran ( v e. U |-> ( v " { P } ) ) e. _V /\ p = P /\ v e. U ) ) -> p = P ) |
| 99 |
98
|
sneqd |
|- ( ( P e. X /\ ( ran ( v e. U |-> ( v " { P } ) ) e. _V /\ p = P /\ v e. U ) ) -> { p } = { P } ) |
| 100 |
99
|
imaeq2d |
|- ( ( P e. X /\ ( ran ( v e. U |-> ( v " { P } ) ) e. _V /\ p = P /\ v e. U ) ) -> ( v " { p } ) = ( v " { P } ) ) |
| 101 |
100
|
3anassrs |
|- ( ( ( ( P e. X /\ ran ( v e. U |-> ( v " { P } ) ) e. _V ) /\ p = P ) /\ v e. U ) -> ( v " { p } ) = ( v " { P } ) ) |
| 102 |
97 101
|
mpteq2da |
|- ( ( ( P e. X /\ ran ( v e. U |-> ( v " { P } ) ) e. _V ) /\ p = P ) -> ( v e. U |-> ( v " { p } ) ) = ( v e. U |-> ( v " { P } ) ) ) |
| 103 |
102
|
rneqd |
|- ( ( ( P e. X /\ ran ( v e. U |-> ( v " { P } ) ) e. _V ) /\ p = P ) -> ran ( v e. U |-> ( v " { p } ) ) = ran ( v e. U |-> ( v " { P } ) ) ) |
| 104 |
|
simpl |
|- ( ( P e. X /\ ran ( v e. U |-> ( v " { P } ) ) e. _V ) -> P e. X ) |
| 105 |
|
simpr |
|- ( ( P e. X /\ ran ( v e. U |-> ( v " { P } ) ) e. _V ) -> ran ( v e. U |-> ( v " { P } ) ) e. _V ) |
| 106 |
3 103 104 105
|
fvmptd2 |
|- ( ( P e. X /\ ran ( v e. U |-> ( v " { P } ) ) e. _V ) -> ( N ` P ) = ran ( v e. U |-> ( v " { P } ) ) ) |
| 107 |
84 90 106
|
syl2anc |
|- ( ( U e. ( UnifOn ` X ) /\ P e. X ) -> ( N ` P ) = ran ( v e. U |-> ( v " { P } ) ) ) |
| 108 |
72 86 107
|
3eqtr2d |
|- ( ( U e. ( UnifOn ` X ) /\ P e. X ) -> ( ( nei ` J ) ` { P } ) = ran ( v e. U |-> ( v " { P } ) ) ) |