| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bfp.2 |  |-  ( ph -> D e. ( CMet ` X ) ) | 
						
							| 2 |  | bfp.3 |  |-  ( ph -> X =/= (/) ) | 
						
							| 3 |  | bfp.4 |  |-  ( ph -> K e. RR+ ) | 
						
							| 4 |  | bfp.5 |  |-  ( ph -> K < 1 ) | 
						
							| 5 |  | bfp.6 |  |-  ( ph -> F : X --> X ) | 
						
							| 6 |  | bfp.7 |  |-  ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( ( F ` x ) D ( F ` y ) ) <_ ( K x. ( x D y ) ) ) | 
						
							| 7 |  | n0 |  |-  ( X =/= (/) <-> E. w w e. X ) | 
						
							| 8 | 2 7 | sylib |  |-  ( ph -> E. w w e. X ) | 
						
							| 9 | 1 | adantr |  |-  ( ( ph /\ w e. X ) -> D e. ( CMet ` X ) ) | 
						
							| 10 | 2 | adantr |  |-  ( ( ph /\ w e. X ) -> X =/= (/) ) | 
						
							| 11 | 3 | adantr |  |-  ( ( ph /\ w e. X ) -> K e. RR+ ) | 
						
							| 12 | 4 | adantr |  |-  ( ( ph /\ w e. X ) -> K < 1 ) | 
						
							| 13 | 5 | adantr |  |-  ( ( ph /\ w e. X ) -> F : X --> X ) | 
						
							| 14 | 6 | adantlr |  |-  ( ( ( ph /\ w e. X ) /\ ( x e. X /\ y e. X ) ) -> ( ( F ` x ) D ( F ` y ) ) <_ ( K x. ( x D y ) ) ) | 
						
							| 15 |  | eqid |  |-  ( MetOpen ` D ) = ( MetOpen ` D ) | 
						
							| 16 |  | simpr |  |-  ( ( ph /\ w e. X ) -> w e. X ) | 
						
							| 17 |  | eqid |  |-  seq 1 ( ( F o. 1st ) , ( NN X. { w } ) ) = seq 1 ( ( F o. 1st ) , ( NN X. { w } ) ) | 
						
							| 18 | 9 10 11 12 13 14 15 16 17 | bfplem2 |  |-  ( ( ph /\ w e. X ) -> E. z e. X ( F ` z ) = z ) | 
						
							| 19 | 8 18 | exlimddv |  |-  ( ph -> E. z e. X ( F ` z ) = z ) | 
						
							| 20 |  | oveq12 |  |-  ( ( ( F ` x ) = x /\ ( F ` y ) = y ) -> ( ( F ` x ) D ( F ` y ) ) = ( x D y ) ) | 
						
							| 21 | 20 | adantl |  |-  ( ( ( ph /\ ( x e. X /\ y e. X ) ) /\ ( ( F ` x ) = x /\ ( F ` y ) = y ) ) -> ( ( F ` x ) D ( F ` y ) ) = ( x D y ) ) | 
						
							| 22 | 6 | adantr |  |-  ( ( ( ph /\ ( x e. X /\ y e. X ) ) /\ ( ( F ` x ) = x /\ ( F ` y ) = y ) ) -> ( ( F ` x ) D ( F ` y ) ) <_ ( K x. ( x D y ) ) ) | 
						
							| 23 | 21 22 | eqbrtrrd |  |-  ( ( ( ph /\ ( x e. X /\ y e. X ) ) /\ ( ( F ` x ) = x /\ ( F ` y ) = y ) ) -> ( x D y ) <_ ( K x. ( x D y ) ) ) | 
						
							| 24 |  | cmetmet |  |-  ( D e. ( CMet ` X ) -> D e. ( Met ` X ) ) | 
						
							| 25 | 1 24 | syl |  |-  ( ph -> D e. ( Met ` X ) ) | 
						
							| 26 | 25 | ad2antrr |  |-  ( ( ( ph /\ ( x e. X /\ y e. X ) ) /\ ( ( F ` x ) = x /\ ( F ` y ) = y ) ) -> D e. ( Met ` X ) ) | 
						
							| 27 |  | simplrl |  |-  ( ( ( ph /\ ( x e. X /\ y e. X ) ) /\ ( ( F ` x ) = x /\ ( F ` y ) = y ) ) -> x e. X ) | 
						
							| 28 |  | simplrr |  |-  ( ( ( ph /\ ( x e. X /\ y e. X ) ) /\ ( ( F ` x ) = x /\ ( F ` y ) = y ) ) -> y e. X ) | 
						
							| 29 |  | metcl |  |-  ( ( D e. ( Met ` X ) /\ x e. X /\ y e. X ) -> ( x D y ) e. RR ) | 
						
							| 30 | 26 27 28 29 | syl3anc |  |-  ( ( ( ph /\ ( x e. X /\ y e. X ) ) /\ ( ( F ` x ) = x /\ ( F ` y ) = y ) ) -> ( x D y ) e. RR ) | 
						
							| 31 | 3 | rpred |  |-  ( ph -> K e. RR ) | 
						
							| 32 | 31 | ad2antrr |  |-  ( ( ( ph /\ ( x e. X /\ y e. X ) ) /\ ( ( F ` x ) = x /\ ( F ` y ) = y ) ) -> K e. RR ) | 
						
							| 33 | 32 30 | remulcld |  |-  ( ( ( ph /\ ( x e. X /\ y e. X ) ) /\ ( ( F ` x ) = x /\ ( F ` y ) = y ) ) -> ( K x. ( x D y ) ) e. RR ) | 
						
							| 34 | 30 33 | suble0d |  |-  ( ( ( ph /\ ( x e. X /\ y e. X ) ) /\ ( ( F ` x ) = x /\ ( F ` y ) = y ) ) -> ( ( ( x D y ) - ( K x. ( x D y ) ) ) <_ 0 <-> ( x D y ) <_ ( K x. ( x D y ) ) ) ) | 
						
							| 35 | 23 34 | mpbird |  |-  ( ( ( ph /\ ( x e. X /\ y e. X ) ) /\ ( ( F ` x ) = x /\ ( F ` y ) = y ) ) -> ( ( x D y ) - ( K x. ( x D y ) ) ) <_ 0 ) | 
						
							| 36 |  | 1cnd |  |-  ( ( ( ph /\ ( x e. X /\ y e. X ) ) /\ ( ( F ` x ) = x /\ ( F ` y ) = y ) ) -> 1 e. CC ) | 
						
							| 37 | 32 | recnd |  |-  ( ( ( ph /\ ( x e. X /\ y e. X ) ) /\ ( ( F ` x ) = x /\ ( F ` y ) = y ) ) -> K e. CC ) | 
						
							| 38 | 30 | recnd |  |-  ( ( ( ph /\ ( x e. X /\ y e. X ) ) /\ ( ( F ` x ) = x /\ ( F ` y ) = y ) ) -> ( x D y ) e. CC ) | 
						
							| 39 | 36 37 38 | subdird |  |-  ( ( ( ph /\ ( x e. X /\ y e. X ) ) /\ ( ( F ` x ) = x /\ ( F ` y ) = y ) ) -> ( ( 1 - K ) x. ( x D y ) ) = ( ( 1 x. ( x D y ) ) - ( K x. ( x D y ) ) ) ) | 
						
							| 40 | 38 | mullidd |  |-  ( ( ( ph /\ ( x e. X /\ y e. X ) ) /\ ( ( F ` x ) = x /\ ( F ` y ) = y ) ) -> ( 1 x. ( x D y ) ) = ( x D y ) ) | 
						
							| 41 | 40 | oveq1d |  |-  ( ( ( ph /\ ( x e. X /\ y e. X ) ) /\ ( ( F ` x ) = x /\ ( F ` y ) = y ) ) -> ( ( 1 x. ( x D y ) ) - ( K x. ( x D y ) ) ) = ( ( x D y ) - ( K x. ( x D y ) ) ) ) | 
						
							| 42 | 39 41 | eqtrd |  |-  ( ( ( ph /\ ( x e. X /\ y e. X ) ) /\ ( ( F ` x ) = x /\ ( F ` y ) = y ) ) -> ( ( 1 - K ) x. ( x D y ) ) = ( ( x D y ) - ( K x. ( x D y ) ) ) ) | 
						
							| 43 |  | 1re |  |-  1 e. RR | 
						
							| 44 |  | resubcl |  |-  ( ( 1 e. RR /\ K e. RR ) -> ( 1 - K ) e. RR ) | 
						
							| 45 | 43 31 44 | sylancr |  |-  ( ph -> ( 1 - K ) e. RR ) | 
						
							| 46 | 45 | ad2antrr |  |-  ( ( ( ph /\ ( x e. X /\ y e. X ) ) /\ ( ( F ` x ) = x /\ ( F ` y ) = y ) ) -> ( 1 - K ) e. RR ) | 
						
							| 47 | 46 | recnd |  |-  ( ( ( ph /\ ( x e. X /\ y e. X ) ) /\ ( ( F ` x ) = x /\ ( F ` y ) = y ) ) -> ( 1 - K ) e. CC ) | 
						
							| 48 | 47 | mul01d |  |-  ( ( ( ph /\ ( x e. X /\ y e. X ) ) /\ ( ( F ` x ) = x /\ ( F ` y ) = y ) ) -> ( ( 1 - K ) x. 0 ) = 0 ) | 
						
							| 49 | 35 42 48 | 3brtr4d |  |-  ( ( ( ph /\ ( x e. X /\ y e. X ) ) /\ ( ( F ` x ) = x /\ ( F ` y ) = y ) ) -> ( ( 1 - K ) x. ( x D y ) ) <_ ( ( 1 - K ) x. 0 ) ) | 
						
							| 50 |  | 0red |  |-  ( ( ( ph /\ ( x e. X /\ y e. X ) ) /\ ( ( F ` x ) = x /\ ( F ` y ) = y ) ) -> 0 e. RR ) | 
						
							| 51 |  | posdif |  |-  ( ( K e. RR /\ 1 e. RR ) -> ( K < 1 <-> 0 < ( 1 - K ) ) ) | 
						
							| 52 | 31 43 51 | sylancl |  |-  ( ph -> ( K < 1 <-> 0 < ( 1 - K ) ) ) | 
						
							| 53 | 4 52 | mpbid |  |-  ( ph -> 0 < ( 1 - K ) ) | 
						
							| 54 | 53 | ad2antrr |  |-  ( ( ( ph /\ ( x e. X /\ y e. X ) ) /\ ( ( F ` x ) = x /\ ( F ` y ) = y ) ) -> 0 < ( 1 - K ) ) | 
						
							| 55 |  | lemul2 |  |-  ( ( ( x D y ) e. RR /\ 0 e. RR /\ ( ( 1 - K ) e. RR /\ 0 < ( 1 - K ) ) ) -> ( ( x D y ) <_ 0 <-> ( ( 1 - K ) x. ( x D y ) ) <_ ( ( 1 - K ) x. 0 ) ) ) | 
						
							| 56 | 30 50 46 54 55 | syl112anc |  |-  ( ( ( ph /\ ( x e. X /\ y e. X ) ) /\ ( ( F ` x ) = x /\ ( F ` y ) = y ) ) -> ( ( x D y ) <_ 0 <-> ( ( 1 - K ) x. ( x D y ) ) <_ ( ( 1 - K ) x. 0 ) ) ) | 
						
							| 57 | 49 56 | mpbird |  |-  ( ( ( ph /\ ( x e. X /\ y e. X ) ) /\ ( ( F ` x ) = x /\ ( F ` y ) = y ) ) -> ( x D y ) <_ 0 ) | 
						
							| 58 |  | metge0 |  |-  ( ( D e. ( Met ` X ) /\ x e. X /\ y e. X ) -> 0 <_ ( x D y ) ) | 
						
							| 59 | 26 27 28 58 | syl3anc |  |-  ( ( ( ph /\ ( x e. X /\ y e. X ) ) /\ ( ( F ` x ) = x /\ ( F ` y ) = y ) ) -> 0 <_ ( x D y ) ) | 
						
							| 60 |  | 0re |  |-  0 e. RR | 
						
							| 61 |  | letri3 |  |-  ( ( ( x D y ) e. RR /\ 0 e. RR ) -> ( ( x D y ) = 0 <-> ( ( x D y ) <_ 0 /\ 0 <_ ( x D y ) ) ) ) | 
						
							| 62 | 30 60 61 | sylancl |  |-  ( ( ( ph /\ ( x e. X /\ y e. X ) ) /\ ( ( F ` x ) = x /\ ( F ` y ) = y ) ) -> ( ( x D y ) = 0 <-> ( ( x D y ) <_ 0 /\ 0 <_ ( x D y ) ) ) ) | 
						
							| 63 | 57 59 62 | mpbir2and |  |-  ( ( ( ph /\ ( x e. X /\ y e. X ) ) /\ ( ( F ` x ) = x /\ ( F ` y ) = y ) ) -> ( x D y ) = 0 ) | 
						
							| 64 |  | meteq0 |  |-  ( ( D e. ( Met ` X ) /\ x e. X /\ y e. X ) -> ( ( x D y ) = 0 <-> x = y ) ) | 
						
							| 65 | 26 27 28 64 | syl3anc |  |-  ( ( ( ph /\ ( x e. X /\ y e. X ) ) /\ ( ( F ` x ) = x /\ ( F ` y ) = y ) ) -> ( ( x D y ) = 0 <-> x = y ) ) | 
						
							| 66 | 63 65 | mpbid |  |-  ( ( ( ph /\ ( x e. X /\ y e. X ) ) /\ ( ( F ` x ) = x /\ ( F ` y ) = y ) ) -> x = y ) | 
						
							| 67 | 66 | ex |  |-  ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( ( ( F ` x ) = x /\ ( F ` y ) = y ) -> x = y ) ) | 
						
							| 68 | 67 | ralrimivva |  |-  ( ph -> A. x e. X A. y e. X ( ( ( F ` x ) = x /\ ( F ` y ) = y ) -> x = y ) ) | 
						
							| 69 |  | fveq2 |  |-  ( x = z -> ( F ` x ) = ( F ` z ) ) | 
						
							| 70 |  | id |  |-  ( x = z -> x = z ) | 
						
							| 71 | 69 70 | eqeq12d |  |-  ( x = z -> ( ( F ` x ) = x <-> ( F ` z ) = z ) ) | 
						
							| 72 | 71 | anbi1d |  |-  ( x = z -> ( ( ( F ` x ) = x /\ ( F ` y ) = y ) <-> ( ( F ` z ) = z /\ ( F ` y ) = y ) ) ) | 
						
							| 73 |  | equequ1 |  |-  ( x = z -> ( x = y <-> z = y ) ) | 
						
							| 74 | 72 73 | imbi12d |  |-  ( x = z -> ( ( ( ( F ` x ) = x /\ ( F ` y ) = y ) -> x = y ) <-> ( ( ( F ` z ) = z /\ ( F ` y ) = y ) -> z = y ) ) ) | 
						
							| 75 | 74 | ralbidv |  |-  ( x = z -> ( A. y e. X ( ( ( F ` x ) = x /\ ( F ` y ) = y ) -> x = y ) <-> A. y e. X ( ( ( F ` z ) = z /\ ( F ` y ) = y ) -> z = y ) ) ) | 
						
							| 76 | 75 | cbvralvw |  |-  ( A. x e. X A. y e. X ( ( ( F ` x ) = x /\ ( F ` y ) = y ) -> x = y ) <-> A. z e. X A. y e. X ( ( ( F ` z ) = z /\ ( F ` y ) = y ) -> z = y ) ) | 
						
							| 77 | 68 76 | sylib |  |-  ( ph -> A. z e. X A. y e. X ( ( ( F ` z ) = z /\ ( F ` y ) = y ) -> z = y ) ) | 
						
							| 78 |  | fveq2 |  |-  ( z = y -> ( F ` z ) = ( F ` y ) ) | 
						
							| 79 |  | id |  |-  ( z = y -> z = y ) | 
						
							| 80 | 78 79 | eqeq12d |  |-  ( z = y -> ( ( F ` z ) = z <-> ( F ` y ) = y ) ) | 
						
							| 81 | 80 | reu4 |  |-  ( E! z e. X ( F ` z ) = z <-> ( E. z e. X ( F ` z ) = z /\ A. z e. X A. y e. X ( ( ( F ` z ) = z /\ ( F ` y ) = y ) -> z = y ) ) ) | 
						
							| 82 | 19 77 81 | sylanbrc |  |-  ( ph -> E! z e. X ( F ` z ) = z ) |