| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bfp.2 |
|- ( ph -> D e. ( CMet ` X ) ) |
| 2 |
|
bfp.3 |
|- ( ph -> X =/= (/) ) |
| 3 |
|
bfp.4 |
|- ( ph -> K e. RR+ ) |
| 4 |
|
bfp.5 |
|- ( ph -> K < 1 ) |
| 5 |
|
bfp.6 |
|- ( ph -> F : X --> X ) |
| 6 |
|
bfp.7 |
|- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( ( F ` x ) D ( F ` y ) ) <_ ( K x. ( x D y ) ) ) |
| 7 |
|
bfp.8 |
|- J = ( MetOpen ` D ) |
| 8 |
|
bfp.9 |
|- ( ph -> A e. X ) |
| 9 |
|
bfp.10 |
|- G = seq 1 ( ( F o. 1st ) , ( NN X. { A } ) ) |
| 10 |
|
cmetmet |
|- ( D e. ( CMet ` X ) -> D e. ( Met ` X ) ) |
| 11 |
1 10
|
syl |
|- ( ph -> D e. ( Met ` X ) ) |
| 12 |
|
metxmet |
|- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
| 13 |
7
|
mopntopon |
|- ( D e. ( *Met ` X ) -> J e. ( TopOn ` X ) ) |
| 14 |
11 12 13
|
3syl |
|- ( ph -> J e. ( TopOn ` X ) ) |
| 15 |
1 2 3 4 5 6 7 8 9
|
bfplem1 |
|- ( ph -> G ( ~~>t ` J ) ( ( ~~>t ` J ) ` G ) ) |
| 16 |
|
lmcl |
|- ( ( J e. ( TopOn ` X ) /\ G ( ~~>t ` J ) ( ( ~~>t ` J ) ` G ) ) -> ( ( ~~>t ` J ) ` G ) e. X ) |
| 17 |
14 15 16
|
syl2anc |
|- ( ph -> ( ( ~~>t ` J ) ` G ) e. X ) |
| 18 |
11
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> D e. ( Met ` X ) ) |
| 19 |
18 12
|
syl |
|- ( ( ph /\ x e. RR+ ) -> D e. ( *Met ` X ) ) |
| 20 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 21 |
|
1zzd |
|- ( ( ph /\ x e. RR+ ) -> 1 e. ZZ ) |
| 22 |
|
eqidd |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. NN ) -> ( G ` k ) = ( G ` k ) ) |
| 23 |
15
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> G ( ~~>t ` J ) ( ( ~~>t ` J ) ` G ) ) |
| 24 |
|
rphalfcl |
|- ( x e. RR+ -> ( x / 2 ) e. RR+ ) |
| 25 |
24
|
adantl |
|- ( ( ph /\ x e. RR+ ) -> ( x / 2 ) e. RR+ ) |
| 26 |
7 19 20 21 22 23 25
|
lmmcvg |
|- ( ( ph /\ x e. RR+ ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( G ` k ) e. X /\ ( ( G ` k ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) ) ) |
| 27 |
|
simpr |
|- ( ( ( G ` k ) e. X /\ ( ( G ` k ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) ) -> ( ( G ` k ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) ) |
| 28 |
27
|
ralimi |
|- ( A. k e. ( ZZ>= ` j ) ( ( G ` k ) e. X /\ ( ( G ` k ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) ) -> A. k e. ( ZZ>= ` j ) ( ( G ` k ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) ) |
| 29 |
|
nnz |
|- ( j e. NN -> j e. ZZ ) |
| 30 |
29
|
adantl |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> j e. ZZ ) |
| 31 |
|
uzid |
|- ( j e. ZZ -> j e. ( ZZ>= ` j ) ) |
| 32 |
|
fveq2 |
|- ( k = j -> ( G ` k ) = ( G ` j ) ) |
| 33 |
32
|
oveq1d |
|- ( k = j -> ( ( G ` k ) D ( ( ~~>t ` J ) ` G ) ) = ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) ) |
| 34 |
33
|
breq1d |
|- ( k = j -> ( ( ( G ` k ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) <-> ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) ) ) |
| 35 |
34
|
rspcv |
|- ( j e. ( ZZ>= ` j ) -> ( A. k e. ( ZZ>= ` j ) ( ( G ` k ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) -> ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) ) ) |
| 36 |
30 31 35
|
3syl |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( A. k e. ( ZZ>= ` j ) ( ( G ` k ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) -> ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) ) ) |
| 37 |
30 31
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> j e. ( ZZ>= ` j ) ) |
| 38 |
|
peano2uz |
|- ( j e. ( ZZ>= ` j ) -> ( j + 1 ) e. ( ZZ>= ` j ) ) |
| 39 |
|
fveq2 |
|- ( k = ( j + 1 ) -> ( G ` k ) = ( G ` ( j + 1 ) ) ) |
| 40 |
39
|
oveq1d |
|- ( k = ( j + 1 ) -> ( ( G ` k ) D ( ( ~~>t ` J ) ` G ) ) = ( ( G ` ( j + 1 ) ) D ( ( ~~>t ` J ) ` G ) ) ) |
| 41 |
40
|
breq1d |
|- ( k = ( j + 1 ) -> ( ( ( G ` k ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) <-> ( ( G ` ( j + 1 ) ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) ) ) |
| 42 |
41
|
rspcv |
|- ( ( j + 1 ) e. ( ZZ>= ` j ) -> ( A. k e. ( ZZ>= ` j ) ( ( G ` k ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) -> ( ( G ` ( j + 1 ) ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) ) ) |
| 43 |
37 38 42
|
3syl |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( A. k e. ( ZZ>= ` j ) ( ( G ` k ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) -> ( ( G ` ( j + 1 ) ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) ) ) |
| 44 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 45 |
20 9 44 8 5
|
algrp1 |
|- ( ( ph /\ j e. NN ) -> ( G ` ( j + 1 ) ) = ( F ` ( G ` j ) ) ) |
| 46 |
45
|
adantlr |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( G ` ( j + 1 ) ) = ( F ` ( G ` j ) ) ) |
| 47 |
46
|
oveq1d |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( G ` ( j + 1 ) ) D ( ( ~~>t ` J ) ` G ) ) = ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) ) |
| 48 |
47
|
breq1d |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( ( G ` ( j + 1 ) ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) <-> ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) ) ) |
| 49 |
43 48
|
sylibd |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( A. k e. ( ZZ>= ` j ) ( ( G ` k ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) -> ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) ) ) |
| 50 |
36 49
|
jcad |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( A. k e. ( ZZ>= ` j ) ( ( G ` k ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) -> ( ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) /\ ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) ) ) ) |
| 51 |
11
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> D e. ( Met ` X ) ) |
| 52 |
20 9 44 8 5
|
algrf |
|- ( ph -> G : NN --> X ) |
| 53 |
52
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> G : NN --> X ) |
| 54 |
53
|
ffvelcdmda |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( G ` j ) e. X ) |
| 55 |
17
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( ~~>t ` J ) ` G ) e. X ) |
| 56 |
|
metcl |
|- ( ( D e. ( Met ` X ) /\ ( G ` j ) e. X /\ ( ( ~~>t ` J ) ` G ) e. X ) -> ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) e. RR ) |
| 57 |
51 54 55 56
|
syl3anc |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) e. RR ) |
| 58 |
5
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> F : X --> X ) |
| 59 |
58 54
|
ffvelcdmd |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( F ` ( G ` j ) ) e. X ) |
| 60 |
|
metcl |
|- ( ( D e. ( Met ` X ) /\ ( F ` ( G ` j ) ) e. X /\ ( ( ~~>t ` J ) ` G ) e. X ) -> ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) e. RR ) |
| 61 |
51 59 55 60
|
syl3anc |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) e. RR ) |
| 62 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
| 63 |
62
|
ad2antlr |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> x e. RR ) |
| 64 |
|
lt2halves |
|- ( ( ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) e. RR /\ ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) e. RR /\ x e. RR ) -> ( ( ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) /\ ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) ) -> ( ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) + ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) ) < x ) ) |
| 65 |
57 61 63 64
|
syl3anc |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) /\ ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) ) -> ( ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) + ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) ) < x ) ) |
| 66 |
5 17
|
ffvelcdmd |
|- ( ph -> ( F ` ( ( ~~>t ` J ) ` G ) ) e. X ) |
| 67 |
|
metcl |
|- ( ( D e. ( Met ` X ) /\ ( F ` ( ( ~~>t ` J ) ` G ) ) e. X /\ ( ( ~~>t ` J ) ` G ) e. X ) -> ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) e. RR ) |
| 68 |
11 66 17 67
|
syl3anc |
|- ( ph -> ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) e. RR ) |
| 69 |
68
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) e. RR ) |
| 70 |
58 55
|
ffvelcdmd |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( F ` ( ( ~~>t ` J ) ` G ) ) e. X ) |
| 71 |
|
metcl |
|- ( ( D e. ( Met ` X ) /\ ( F ` ( G ` j ) ) e. X /\ ( F ` ( ( ~~>t ` J ) ` G ) ) e. X ) -> ( ( F ` ( G ` j ) ) D ( F ` ( ( ~~>t ` J ) ` G ) ) ) e. RR ) |
| 72 |
51 59 70 71
|
syl3anc |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( F ` ( G ` j ) ) D ( F ` ( ( ~~>t ` J ) ` G ) ) ) e. RR ) |
| 73 |
72 61
|
readdcld |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( ( F ` ( G ` j ) ) D ( F ` ( ( ~~>t ` J ) ` G ) ) ) + ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) ) e. RR ) |
| 74 |
57 61
|
readdcld |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) + ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) ) e. RR ) |
| 75 |
|
mettri2 |
|- ( ( D e. ( Met ` X ) /\ ( ( F ` ( G ` j ) ) e. X /\ ( F ` ( ( ~~>t ` J ) ` G ) ) e. X /\ ( ( ~~>t ` J ) ` G ) e. X ) ) -> ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) <_ ( ( ( F ` ( G ` j ) ) D ( F ` ( ( ~~>t ` J ) ` G ) ) ) + ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) ) ) |
| 76 |
51 59 70 55 75
|
syl13anc |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) <_ ( ( ( F ` ( G ` j ) ) D ( F ` ( ( ~~>t ` J ) ` G ) ) ) + ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) ) ) |
| 77 |
3
|
rpred |
|- ( ph -> K e. RR ) |
| 78 |
77
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> K e. RR ) |
| 79 |
78 57
|
remulcld |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( K x. ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) ) e. RR ) |
| 80 |
54 55
|
jca |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( G ` j ) e. X /\ ( ( ~~>t ` J ) ` G ) e. X ) ) |
| 81 |
6
|
ralrimivva |
|- ( ph -> A. x e. X A. y e. X ( ( F ` x ) D ( F ` y ) ) <_ ( K x. ( x D y ) ) ) |
| 82 |
81
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> A. x e. X A. y e. X ( ( F ` x ) D ( F ` y ) ) <_ ( K x. ( x D y ) ) ) |
| 83 |
|
fveq2 |
|- ( x = ( G ` j ) -> ( F ` x ) = ( F ` ( G ` j ) ) ) |
| 84 |
83
|
oveq1d |
|- ( x = ( G ` j ) -> ( ( F ` x ) D ( F ` y ) ) = ( ( F ` ( G ` j ) ) D ( F ` y ) ) ) |
| 85 |
|
oveq1 |
|- ( x = ( G ` j ) -> ( x D y ) = ( ( G ` j ) D y ) ) |
| 86 |
85
|
oveq2d |
|- ( x = ( G ` j ) -> ( K x. ( x D y ) ) = ( K x. ( ( G ` j ) D y ) ) ) |
| 87 |
84 86
|
breq12d |
|- ( x = ( G ` j ) -> ( ( ( F ` x ) D ( F ` y ) ) <_ ( K x. ( x D y ) ) <-> ( ( F ` ( G ` j ) ) D ( F ` y ) ) <_ ( K x. ( ( G ` j ) D y ) ) ) ) |
| 88 |
|
fveq2 |
|- ( y = ( ( ~~>t ` J ) ` G ) -> ( F ` y ) = ( F ` ( ( ~~>t ` J ) ` G ) ) ) |
| 89 |
88
|
oveq2d |
|- ( y = ( ( ~~>t ` J ) ` G ) -> ( ( F ` ( G ` j ) ) D ( F ` y ) ) = ( ( F ` ( G ` j ) ) D ( F ` ( ( ~~>t ` J ) ` G ) ) ) ) |
| 90 |
|
oveq2 |
|- ( y = ( ( ~~>t ` J ) ` G ) -> ( ( G ` j ) D y ) = ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) ) |
| 91 |
90
|
oveq2d |
|- ( y = ( ( ~~>t ` J ) ` G ) -> ( K x. ( ( G ` j ) D y ) ) = ( K x. ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) ) ) |
| 92 |
89 91
|
breq12d |
|- ( y = ( ( ~~>t ` J ) ` G ) -> ( ( ( F ` ( G ` j ) ) D ( F ` y ) ) <_ ( K x. ( ( G ` j ) D y ) ) <-> ( ( F ` ( G ` j ) ) D ( F ` ( ( ~~>t ` J ) ` G ) ) ) <_ ( K x. ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) ) ) ) |
| 93 |
87 92
|
rspc2v |
|- ( ( ( G ` j ) e. X /\ ( ( ~~>t ` J ) ` G ) e. X ) -> ( A. x e. X A. y e. X ( ( F ` x ) D ( F ` y ) ) <_ ( K x. ( x D y ) ) -> ( ( F ` ( G ` j ) ) D ( F ` ( ( ~~>t ` J ) ` G ) ) ) <_ ( K x. ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) ) ) ) |
| 94 |
80 82 93
|
sylc |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( F ` ( G ` j ) ) D ( F ` ( ( ~~>t ` J ) ` G ) ) ) <_ ( K x. ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) ) ) |
| 95 |
|
1red |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> 1 e. RR ) |
| 96 |
|
metge0 |
|- ( ( D e. ( Met ` X ) /\ ( G ` j ) e. X /\ ( ( ~~>t ` J ) ` G ) e. X ) -> 0 <_ ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) ) |
| 97 |
51 54 55 96
|
syl3anc |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> 0 <_ ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) ) |
| 98 |
|
1re |
|- 1 e. RR |
| 99 |
|
ltle |
|- ( ( K e. RR /\ 1 e. RR ) -> ( K < 1 -> K <_ 1 ) ) |
| 100 |
77 98 99
|
sylancl |
|- ( ph -> ( K < 1 -> K <_ 1 ) ) |
| 101 |
4 100
|
mpd |
|- ( ph -> K <_ 1 ) |
| 102 |
101
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> K <_ 1 ) |
| 103 |
78 95 57 97 102
|
lemul1ad |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( K x. ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) ) <_ ( 1 x. ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) ) ) |
| 104 |
57
|
recnd |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) e. CC ) |
| 105 |
104
|
mullidd |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( 1 x. ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) ) = ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) ) |
| 106 |
103 105
|
breqtrd |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( K x. ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) ) <_ ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) ) |
| 107 |
72 79 57 94 106
|
letrd |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( F ` ( G ` j ) ) D ( F ` ( ( ~~>t ` J ) ` G ) ) ) <_ ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) ) |
| 108 |
72 57 61 107
|
leadd1dd |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( ( F ` ( G ` j ) ) D ( F ` ( ( ~~>t ` J ) ` G ) ) ) + ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) ) <_ ( ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) + ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) ) ) |
| 109 |
69 73 74 76 108
|
letrd |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) <_ ( ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) + ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) ) ) |
| 110 |
|
lelttr |
|- ( ( ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) e. RR /\ ( ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) + ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) ) e. RR /\ x e. RR ) -> ( ( ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) <_ ( ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) + ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) ) /\ ( ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) + ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) ) < x ) -> ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) < x ) ) |
| 111 |
69 74 63 110
|
syl3anc |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) <_ ( ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) + ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) ) /\ ( ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) + ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) ) < x ) -> ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) < x ) ) |
| 112 |
109 111
|
mpand |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) + ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) ) < x -> ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) < x ) ) |
| 113 |
50 65 112
|
3syld |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( A. k e. ( ZZ>= ` j ) ( ( G ` k ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) -> ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) < x ) ) |
| 114 |
28 113
|
syl5 |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( A. k e. ( ZZ>= ` j ) ( ( G ` k ) e. X /\ ( ( G ` k ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) ) -> ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) < x ) ) |
| 115 |
114
|
rexlimdva |
|- ( ( ph /\ x e. RR+ ) -> ( E. j e. NN A. k e. ( ZZ>= ` j ) ( ( G ` k ) e. X /\ ( ( G ` k ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) ) -> ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) < x ) ) |
| 116 |
26 115
|
mpd |
|- ( ( ph /\ x e. RR+ ) -> ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) < x ) |
| 117 |
|
ltle |
|- ( ( ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) e. RR /\ x e. RR ) -> ( ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) < x -> ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) <_ x ) ) |
| 118 |
68 62 117
|
syl2an |
|- ( ( ph /\ x e. RR+ ) -> ( ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) < x -> ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) <_ x ) ) |
| 119 |
116 118
|
mpd |
|- ( ( ph /\ x e. RR+ ) -> ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) <_ x ) |
| 120 |
62
|
adantl |
|- ( ( ph /\ x e. RR+ ) -> x e. RR ) |
| 121 |
120
|
recnd |
|- ( ( ph /\ x e. RR+ ) -> x e. CC ) |
| 122 |
121
|
addlidd |
|- ( ( ph /\ x e. RR+ ) -> ( 0 + x ) = x ) |
| 123 |
119 122
|
breqtrrd |
|- ( ( ph /\ x e. RR+ ) -> ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) <_ ( 0 + x ) ) |
| 124 |
123
|
ralrimiva |
|- ( ph -> A. x e. RR+ ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) <_ ( 0 + x ) ) |
| 125 |
|
0re |
|- 0 e. RR |
| 126 |
|
alrple |
|- ( ( ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) e. RR /\ 0 e. RR ) -> ( ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) <_ 0 <-> A. x e. RR+ ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) <_ ( 0 + x ) ) ) |
| 127 |
68 125 126
|
sylancl |
|- ( ph -> ( ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) <_ 0 <-> A. x e. RR+ ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) <_ ( 0 + x ) ) ) |
| 128 |
124 127
|
mpbird |
|- ( ph -> ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) <_ 0 ) |
| 129 |
|
metge0 |
|- ( ( D e. ( Met ` X ) /\ ( F ` ( ( ~~>t ` J ) ` G ) ) e. X /\ ( ( ~~>t ` J ) ` G ) e. X ) -> 0 <_ ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) ) |
| 130 |
11 66 17 129
|
syl3anc |
|- ( ph -> 0 <_ ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) ) |
| 131 |
|
letri3 |
|- ( ( ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) e. RR /\ 0 e. RR ) -> ( ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) = 0 <-> ( ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) <_ 0 /\ 0 <_ ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) ) ) ) |
| 132 |
68 125 131
|
sylancl |
|- ( ph -> ( ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) = 0 <-> ( ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) <_ 0 /\ 0 <_ ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) ) ) ) |
| 133 |
128 130 132
|
mpbir2and |
|- ( ph -> ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) = 0 ) |
| 134 |
|
meteq0 |
|- ( ( D e. ( Met ` X ) /\ ( F ` ( ( ~~>t ` J ) ` G ) ) e. X /\ ( ( ~~>t ` J ) ` G ) e. X ) -> ( ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) = 0 <-> ( F ` ( ( ~~>t ` J ) ` G ) ) = ( ( ~~>t ` J ) ` G ) ) ) |
| 135 |
11 66 17 134
|
syl3anc |
|- ( ph -> ( ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) = 0 <-> ( F ` ( ( ~~>t ` J ) ` G ) ) = ( ( ~~>t ` J ) ` G ) ) ) |
| 136 |
133 135
|
mpbid |
|- ( ph -> ( F ` ( ( ~~>t ` J ) ` G ) ) = ( ( ~~>t ` J ) ` G ) ) |
| 137 |
|
fveq2 |
|- ( z = ( ( ~~>t ` J ) ` G ) -> ( F ` z ) = ( F ` ( ( ~~>t ` J ) ` G ) ) ) |
| 138 |
|
id |
|- ( z = ( ( ~~>t ` J ) ` G ) -> z = ( ( ~~>t ` J ) ` G ) ) |
| 139 |
137 138
|
eqeq12d |
|- ( z = ( ( ~~>t ` J ) ` G ) -> ( ( F ` z ) = z <-> ( F ` ( ( ~~>t ` J ) ` G ) ) = ( ( ~~>t ` J ) ` G ) ) ) |
| 140 |
139
|
rspcev |
|- ( ( ( ( ~~>t ` J ) ` G ) e. X /\ ( F ` ( ( ~~>t ` J ) ` G ) ) = ( ( ~~>t ` J ) ` G ) ) -> E. z e. X ( F ` z ) = z ) |
| 141 |
17 136 140
|
syl2anc |
|- ( ph -> E. z e. X ( F ` z ) = z ) |