| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bfp.2 |  |-  ( ph -> D e. ( CMet ` X ) ) | 
						
							| 2 |  | bfp.3 |  |-  ( ph -> X =/= (/) ) | 
						
							| 3 |  | bfp.4 |  |-  ( ph -> K e. RR+ ) | 
						
							| 4 |  | bfp.5 |  |-  ( ph -> K < 1 ) | 
						
							| 5 |  | bfp.6 |  |-  ( ph -> F : X --> X ) | 
						
							| 6 |  | bfp.7 |  |-  ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( ( F ` x ) D ( F ` y ) ) <_ ( K x. ( x D y ) ) ) | 
						
							| 7 |  | bfp.8 |  |-  J = ( MetOpen ` D ) | 
						
							| 8 |  | bfp.9 |  |-  ( ph -> A e. X ) | 
						
							| 9 |  | bfp.10 |  |-  G = seq 1 ( ( F o. 1st ) , ( NN X. { A } ) ) | 
						
							| 10 |  | cmetmet |  |-  ( D e. ( CMet ` X ) -> D e. ( Met ` X ) ) | 
						
							| 11 | 1 10 | syl |  |-  ( ph -> D e. ( Met ` X ) ) | 
						
							| 12 |  | metxmet |  |-  ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) | 
						
							| 13 | 7 | mopntopon |  |-  ( D e. ( *Met ` X ) -> J e. ( TopOn ` X ) ) | 
						
							| 14 | 11 12 13 | 3syl |  |-  ( ph -> J e. ( TopOn ` X ) ) | 
						
							| 15 | 1 2 3 4 5 6 7 8 9 | bfplem1 |  |-  ( ph -> G ( ~~>t ` J ) ( ( ~~>t ` J ) ` G ) ) | 
						
							| 16 |  | lmcl |  |-  ( ( J e. ( TopOn ` X ) /\ G ( ~~>t ` J ) ( ( ~~>t ` J ) ` G ) ) -> ( ( ~~>t ` J ) ` G ) e. X ) | 
						
							| 17 | 14 15 16 | syl2anc |  |-  ( ph -> ( ( ~~>t ` J ) ` G ) e. X ) | 
						
							| 18 | 11 | adantr |  |-  ( ( ph /\ x e. RR+ ) -> D e. ( Met ` X ) ) | 
						
							| 19 | 18 12 | syl |  |-  ( ( ph /\ x e. RR+ ) -> D e. ( *Met ` X ) ) | 
						
							| 20 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 21 |  | 1zzd |  |-  ( ( ph /\ x e. RR+ ) -> 1 e. ZZ ) | 
						
							| 22 |  | eqidd |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. NN ) -> ( G ` k ) = ( G ` k ) ) | 
						
							| 23 | 15 | adantr |  |-  ( ( ph /\ x e. RR+ ) -> G ( ~~>t ` J ) ( ( ~~>t ` J ) ` G ) ) | 
						
							| 24 |  | rphalfcl |  |-  ( x e. RR+ -> ( x / 2 ) e. RR+ ) | 
						
							| 25 | 24 | adantl |  |-  ( ( ph /\ x e. RR+ ) -> ( x / 2 ) e. RR+ ) | 
						
							| 26 | 7 19 20 21 22 23 25 | lmmcvg |  |-  ( ( ph /\ x e. RR+ ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( G ` k ) e. X /\ ( ( G ` k ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) ) ) | 
						
							| 27 |  | simpr |  |-  ( ( ( G ` k ) e. X /\ ( ( G ` k ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) ) -> ( ( G ` k ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) ) | 
						
							| 28 | 27 | ralimi |  |-  ( A. k e. ( ZZ>= ` j ) ( ( G ` k ) e. X /\ ( ( G ` k ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) ) -> A. k e. ( ZZ>= ` j ) ( ( G ` k ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) ) | 
						
							| 29 |  | nnz |  |-  ( j e. NN -> j e. ZZ ) | 
						
							| 30 | 29 | adantl |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> j e. ZZ ) | 
						
							| 31 |  | uzid |  |-  ( j e. ZZ -> j e. ( ZZ>= ` j ) ) | 
						
							| 32 |  | fveq2 |  |-  ( k = j -> ( G ` k ) = ( G ` j ) ) | 
						
							| 33 | 32 | oveq1d |  |-  ( k = j -> ( ( G ` k ) D ( ( ~~>t ` J ) ` G ) ) = ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) ) | 
						
							| 34 | 33 | breq1d |  |-  ( k = j -> ( ( ( G ` k ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) <-> ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) ) ) | 
						
							| 35 | 34 | rspcv |  |-  ( j e. ( ZZ>= ` j ) -> ( A. k e. ( ZZ>= ` j ) ( ( G ` k ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) -> ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) ) ) | 
						
							| 36 | 30 31 35 | 3syl |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( A. k e. ( ZZ>= ` j ) ( ( G ` k ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) -> ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) ) ) | 
						
							| 37 | 30 31 | syl |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> j e. ( ZZ>= ` j ) ) | 
						
							| 38 |  | peano2uz |  |-  ( j e. ( ZZ>= ` j ) -> ( j + 1 ) e. ( ZZ>= ` j ) ) | 
						
							| 39 |  | fveq2 |  |-  ( k = ( j + 1 ) -> ( G ` k ) = ( G ` ( j + 1 ) ) ) | 
						
							| 40 | 39 | oveq1d |  |-  ( k = ( j + 1 ) -> ( ( G ` k ) D ( ( ~~>t ` J ) ` G ) ) = ( ( G ` ( j + 1 ) ) D ( ( ~~>t ` J ) ` G ) ) ) | 
						
							| 41 | 40 | breq1d |  |-  ( k = ( j + 1 ) -> ( ( ( G ` k ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) <-> ( ( G ` ( j + 1 ) ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) ) ) | 
						
							| 42 | 41 | rspcv |  |-  ( ( j + 1 ) e. ( ZZ>= ` j ) -> ( A. k e. ( ZZ>= ` j ) ( ( G ` k ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) -> ( ( G ` ( j + 1 ) ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) ) ) | 
						
							| 43 | 37 38 42 | 3syl |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( A. k e. ( ZZ>= ` j ) ( ( G ` k ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) -> ( ( G ` ( j + 1 ) ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) ) ) | 
						
							| 44 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 45 | 20 9 44 8 5 | algrp1 |  |-  ( ( ph /\ j e. NN ) -> ( G ` ( j + 1 ) ) = ( F ` ( G ` j ) ) ) | 
						
							| 46 | 45 | adantlr |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( G ` ( j + 1 ) ) = ( F ` ( G ` j ) ) ) | 
						
							| 47 | 46 | oveq1d |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( G ` ( j + 1 ) ) D ( ( ~~>t ` J ) ` G ) ) = ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) ) | 
						
							| 48 | 47 | breq1d |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( ( G ` ( j + 1 ) ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) <-> ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) ) ) | 
						
							| 49 | 43 48 | sylibd |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( A. k e. ( ZZ>= ` j ) ( ( G ` k ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) -> ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) ) ) | 
						
							| 50 | 36 49 | jcad |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( A. k e. ( ZZ>= ` j ) ( ( G ` k ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) -> ( ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) /\ ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) ) ) ) | 
						
							| 51 | 11 | ad2antrr |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> D e. ( Met ` X ) ) | 
						
							| 52 | 20 9 44 8 5 | algrf |  |-  ( ph -> G : NN --> X ) | 
						
							| 53 | 52 | adantr |  |-  ( ( ph /\ x e. RR+ ) -> G : NN --> X ) | 
						
							| 54 | 53 | ffvelcdmda |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( G ` j ) e. X ) | 
						
							| 55 | 17 | ad2antrr |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( ~~>t ` J ) ` G ) e. X ) | 
						
							| 56 |  | metcl |  |-  ( ( D e. ( Met ` X ) /\ ( G ` j ) e. X /\ ( ( ~~>t ` J ) ` G ) e. X ) -> ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) e. RR ) | 
						
							| 57 | 51 54 55 56 | syl3anc |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) e. RR ) | 
						
							| 58 | 5 | ad2antrr |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> F : X --> X ) | 
						
							| 59 | 58 54 | ffvelcdmd |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( F ` ( G ` j ) ) e. X ) | 
						
							| 60 |  | metcl |  |-  ( ( D e. ( Met ` X ) /\ ( F ` ( G ` j ) ) e. X /\ ( ( ~~>t ` J ) ` G ) e. X ) -> ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) e. RR ) | 
						
							| 61 | 51 59 55 60 | syl3anc |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) e. RR ) | 
						
							| 62 |  | rpre |  |-  ( x e. RR+ -> x e. RR ) | 
						
							| 63 | 62 | ad2antlr |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> x e. RR ) | 
						
							| 64 |  | lt2halves |  |-  ( ( ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) e. RR /\ ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) e. RR /\ x e. RR ) -> ( ( ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) /\ ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) ) -> ( ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) + ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) ) < x ) ) | 
						
							| 65 | 57 61 63 64 | syl3anc |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) /\ ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) ) -> ( ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) + ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) ) < x ) ) | 
						
							| 66 | 5 17 | ffvelcdmd |  |-  ( ph -> ( F ` ( ( ~~>t ` J ) ` G ) ) e. X ) | 
						
							| 67 |  | metcl |  |-  ( ( D e. ( Met ` X ) /\ ( F ` ( ( ~~>t ` J ) ` G ) ) e. X /\ ( ( ~~>t ` J ) ` G ) e. X ) -> ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) e. RR ) | 
						
							| 68 | 11 66 17 67 | syl3anc |  |-  ( ph -> ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) e. RR ) | 
						
							| 69 | 68 | ad2antrr |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) e. RR ) | 
						
							| 70 | 58 55 | ffvelcdmd |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( F ` ( ( ~~>t ` J ) ` G ) ) e. X ) | 
						
							| 71 |  | metcl |  |-  ( ( D e. ( Met ` X ) /\ ( F ` ( G ` j ) ) e. X /\ ( F ` ( ( ~~>t ` J ) ` G ) ) e. X ) -> ( ( F ` ( G ` j ) ) D ( F ` ( ( ~~>t ` J ) ` G ) ) ) e. RR ) | 
						
							| 72 | 51 59 70 71 | syl3anc |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( F ` ( G ` j ) ) D ( F ` ( ( ~~>t ` J ) ` G ) ) ) e. RR ) | 
						
							| 73 | 72 61 | readdcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( ( F ` ( G ` j ) ) D ( F ` ( ( ~~>t ` J ) ` G ) ) ) + ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) ) e. RR ) | 
						
							| 74 | 57 61 | readdcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) + ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) ) e. RR ) | 
						
							| 75 |  | mettri2 |  |-  ( ( D e. ( Met ` X ) /\ ( ( F ` ( G ` j ) ) e. X /\ ( F ` ( ( ~~>t ` J ) ` G ) ) e. X /\ ( ( ~~>t ` J ) ` G ) e. X ) ) -> ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) <_ ( ( ( F ` ( G ` j ) ) D ( F ` ( ( ~~>t ` J ) ` G ) ) ) + ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) ) ) | 
						
							| 76 | 51 59 70 55 75 | syl13anc |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) <_ ( ( ( F ` ( G ` j ) ) D ( F ` ( ( ~~>t ` J ) ` G ) ) ) + ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) ) ) | 
						
							| 77 | 3 | rpred |  |-  ( ph -> K e. RR ) | 
						
							| 78 | 77 | ad2antrr |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> K e. RR ) | 
						
							| 79 | 78 57 | remulcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( K x. ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) ) e. RR ) | 
						
							| 80 | 54 55 | jca |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( G ` j ) e. X /\ ( ( ~~>t ` J ) ` G ) e. X ) ) | 
						
							| 81 | 6 | ralrimivva |  |-  ( ph -> A. x e. X A. y e. X ( ( F ` x ) D ( F ` y ) ) <_ ( K x. ( x D y ) ) ) | 
						
							| 82 | 81 | ad2antrr |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> A. x e. X A. y e. X ( ( F ` x ) D ( F ` y ) ) <_ ( K x. ( x D y ) ) ) | 
						
							| 83 |  | fveq2 |  |-  ( x = ( G ` j ) -> ( F ` x ) = ( F ` ( G ` j ) ) ) | 
						
							| 84 | 83 | oveq1d |  |-  ( x = ( G ` j ) -> ( ( F ` x ) D ( F ` y ) ) = ( ( F ` ( G ` j ) ) D ( F ` y ) ) ) | 
						
							| 85 |  | oveq1 |  |-  ( x = ( G ` j ) -> ( x D y ) = ( ( G ` j ) D y ) ) | 
						
							| 86 | 85 | oveq2d |  |-  ( x = ( G ` j ) -> ( K x. ( x D y ) ) = ( K x. ( ( G ` j ) D y ) ) ) | 
						
							| 87 | 84 86 | breq12d |  |-  ( x = ( G ` j ) -> ( ( ( F ` x ) D ( F ` y ) ) <_ ( K x. ( x D y ) ) <-> ( ( F ` ( G ` j ) ) D ( F ` y ) ) <_ ( K x. ( ( G ` j ) D y ) ) ) ) | 
						
							| 88 |  | fveq2 |  |-  ( y = ( ( ~~>t ` J ) ` G ) -> ( F ` y ) = ( F ` ( ( ~~>t ` J ) ` G ) ) ) | 
						
							| 89 | 88 | oveq2d |  |-  ( y = ( ( ~~>t ` J ) ` G ) -> ( ( F ` ( G ` j ) ) D ( F ` y ) ) = ( ( F ` ( G ` j ) ) D ( F ` ( ( ~~>t ` J ) ` G ) ) ) ) | 
						
							| 90 |  | oveq2 |  |-  ( y = ( ( ~~>t ` J ) ` G ) -> ( ( G ` j ) D y ) = ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) ) | 
						
							| 91 | 90 | oveq2d |  |-  ( y = ( ( ~~>t ` J ) ` G ) -> ( K x. ( ( G ` j ) D y ) ) = ( K x. ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) ) ) | 
						
							| 92 | 89 91 | breq12d |  |-  ( y = ( ( ~~>t ` J ) ` G ) -> ( ( ( F ` ( G ` j ) ) D ( F ` y ) ) <_ ( K x. ( ( G ` j ) D y ) ) <-> ( ( F ` ( G ` j ) ) D ( F ` ( ( ~~>t ` J ) ` G ) ) ) <_ ( K x. ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) ) ) ) | 
						
							| 93 | 87 92 | rspc2v |  |-  ( ( ( G ` j ) e. X /\ ( ( ~~>t ` J ) ` G ) e. X ) -> ( A. x e. X A. y e. X ( ( F ` x ) D ( F ` y ) ) <_ ( K x. ( x D y ) ) -> ( ( F ` ( G ` j ) ) D ( F ` ( ( ~~>t ` J ) ` G ) ) ) <_ ( K x. ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) ) ) ) | 
						
							| 94 | 80 82 93 | sylc |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( F ` ( G ` j ) ) D ( F ` ( ( ~~>t ` J ) ` G ) ) ) <_ ( K x. ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) ) ) | 
						
							| 95 |  | 1red |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> 1 e. RR ) | 
						
							| 96 |  | metge0 |  |-  ( ( D e. ( Met ` X ) /\ ( G ` j ) e. X /\ ( ( ~~>t ` J ) ` G ) e. X ) -> 0 <_ ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) ) | 
						
							| 97 | 51 54 55 96 | syl3anc |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> 0 <_ ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) ) | 
						
							| 98 |  | 1re |  |-  1 e. RR | 
						
							| 99 |  | ltle |  |-  ( ( K e. RR /\ 1 e. RR ) -> ( K < 1 -> K <_ 1 ) ) | 
						
							| 100 | 77 98 99 | sylancl |  |-  ( ph -> ( K < 1 -> K <_ 1 ) ) | 
						
							| 101 | 4 100 | mpd |  |-  ( ph -> K <_ 1 ) | 
						
							| 102 | 101 | ad2antrr |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> K <_ 1 ) | 
						
							| 103 | 78 95 57 97 102 | lemul1ad |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( K x. ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) ) <_ ( 1 x. ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) ) ) | 
						
							| 104 | 57 | recnd |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) e. CC ) | 
						
							| 105 | 104 | mullidd |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( 1 x. ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) ) = ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) ) | 
						
							| 106 | 103 105 | breqtrd |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( K x. ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) ) <_ ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) ) | 
						
							| 107 | 72 79 57 94 106 | letrd |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( F ` ( G ` j ) ) D ( F ` ( ( ~~>t ` J ) ` G ) ) ) <_ ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) ) | 
						
							| 108 | 72 57 61 107 | leadd1dd |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( ( F ` ( G ` j ) ) D ( F ` ( ( ~~>t ` J ) ` G ) ) ) + ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) ) <_ ( ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) + ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) ) ) | 
						
							| 109 | 69 73 74 76 108 | letrd |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) <_ ( ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) + ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) ) ) | 
						
							| 110 |  | lelttr |  |-  ( ( ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) e. RR /\ ( ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) + ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) ) e. RR /\ x e. RR ) -> ( ( ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) <_ ( ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) + ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) ) /\ ( ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) + ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) ) < x ) -> ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) < x ) ) | 
						
							| 111 | 69 74 63 110 | syl3anc |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) <_ ( ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) + ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) ) /\ ( ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) + ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) ) < x ) -> ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) < x ) ) | 
						
							| 112 | 109 111 | mpand |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( ( ( G ` j ) D ( ( ~~>t ` J ) ` G ) ) + ( ( F ` ( G ` j ) ) D ( ( ~~>t ` J ) ` G ) ) ) < x -> ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) < x ) ) | 
						
							| 113 | 50 65 112 | 3syld |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( A. k e. ( ZZ>= ` j ) ( ( G ` k ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) -> ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) < x ) ) | 
						
							| 114 | 28 113 | syl5 |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( A. k e. ( ZZ>= ` j ) ( ( G ` k ) e. X /\ ( ( G ` k ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) ) -> ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) < x ) ) | 
						
							| 115 | 114 | rexlimdva |  |-  ( ( ph /\ x e. RR+ ) -> ( E. j e. NN A. k e. ( ZZ>= ` j ) ( ( G ` k ) e. X /\ ( ( G ` k ) D ( ( ~~>t ` J ) ` G ) ) < ( x / 2 ) ) -> ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) < x ) ) | 
						
							| 116 | 26 115 | mpd |  |-  ( ( ph /\ x e. RR+ ) -> ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) < x ) | 
						
							| 117 |  | ltle |  |-  ( ( ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) e. RR /\ x e. RR ) -> ( ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) < x -> ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) <_ x ) ) | 
						
							| 118 | 68 62 117 | syl2an |  |-  ( ( ph /\ x e. RR+ ) -> ( ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) < x -> ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) <_ x ) ) | 
						
							| 119 | 116 118 | mpd |  |-  ( ( ph /\ x e. RR+ ) -> ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) <_ x ) | 
						
							| 120 | 62 | adantl |  |-  ( ( ph /\ x e. RR+ ) -> x e. RR ) | 
						
							| 121 | 120 | recnd |  |-  ( ( ph /\ x e. RR+ ) -> x e. CC ) | 
						
							| 122 | 121 | addlidd |  |-  ( ( ph /\ x e. RR+ ) -> ( 0 + x ) = x ) | 
						
							| 123 | 119 122 | breqtrrd |  |-  ( ( ph /\ x e. RR+ ) -> ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) <_ ( 0 + x ) ) | 
						
							| 124 | 123 | ralrimiva |  |-  ( ph -> A. x e. RR+ ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) <_ ( 0 + x ) ) | 
						
							| 125 |  | 0re |  |-  0 e. RR | 
						
							| 126 |  | alrple |  |-  ( ( ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) e. RR /\ 0 e. RR ) -> ( ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) <_ 0 <-> A. x e. RR+ ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) <_ ( 0 + x ) ) ) | 
						
							| 127 | 68 125 126 | sylancl |  |-  ( ph -> ( ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) <_ 0 <-> A. x e. RR+ ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) <_ ( 0 + x ) ) ) | 
						
							| 128 | 124 127 | mpbird |  |-  ( ph -> ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) <_ 0 ) | 
						
							| 129 |  | metge0 |  |-  ( ( D e. ( Met ` X ) /\ ( F ` ( ( ~~>t ` J ) ` G ) ) e. X /\ ( ( ~~>t ` J ) ` G ) e. X ) -> 0 <_ ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) ) | 
						
							| 130 | 11 66 17 129 | syl3anc |  |-  ( ph -> 0 <_ ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) ) | 
						
							| 131 |  | letri3 |  |-  ( ( ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) e. RR /\ 0 e. RR ) -> ( ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) = 0 <-> ( ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) <_ 0 /\ 0 <_ ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) ) ) ) | 
						
							| 132 | 68 125 131 | sylancl |  |-  ( ph -> ( ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) = 0 <-> ( ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) <_ 0 /\ 0 <_ ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) ) ) ) | 
						
							| 133 | 128 130 132 | mpbir2and |  |-  ( ph -> ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) = 0 ) | 
						
							| 134 |  | meteq0 |  |-  ( ( D e. ( Met ` X ) /\ ( F ` ( ( ~~>t ` J ) ` G ) ) e. X /\ ( ( ~~>t ` J ) ` G ) e. X ) -> ( ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) = 0 <-> ( F ` ( ( ~~>t ` J ) ` G ) ) = ( ( ~~>t ` J ) ` G ) ) ) | 
						
							| 135 | 11 66 17 134 | syl3anc |  |-  ( ph -> ( ( ( F ` ( ( ~~>t ` J ) ` G ) ) D ( ( ~~>t ` J ) ` G ) ) = 0 <-> ( F ` ( ( ~~>t ` J ) ` G ) ) = ( ( ~~>t ` J ) ` G ) ) ) | 
						
							| 136 | 133 135 | mpbid |  |-  ( ph -> ( F ` ( ( ~~>t ` J ) ` G ) ) = ( ( ~~>t ` J ) ` G ) ) | 
						
							| 137 |  | fveq2 |  |-  ( z = ( ( ~~>t ` J ) ` G ) -> ( F ` z ) = ( F ` ( ( ~~>t ` J ) ` G ) ) ) | 
						
							| 138 |  | id |  |-  ( z = ( ( ~~>t ` J ) ` G ) -> z = ( ( ~~>t ` J ) ` G ) ) | 
						
							| 139 | 137 138 | eqeq12d |  |-  ( z = ( ( ~~>t ` J ) ` G ) -> ( ( F ` z ) = z <-> ( F ` ( ( ~~>t ` J ) ` G ) ) = ( ( ~~>t ` J ) ` G ) ) ) | 
						
							| 140 | 139 | rspcev |  |-  ( ( ( ( ~~>t ` J ) ` G ) e. X /\ ( F ` ( ( ~~>t ` J ) ` G ) ) = ( ( ~~>t ` J ) ` G ) ) -> E. z e. X ( F ` z ) = z ) | 
						
							| 141 | 17 136 140 | syl2anc |  |-  ( ph -> E. z e. X ( F ` z ) = z ) |