| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bfp.2 | ⊢ ( 𝜑  →  𝐷  ∈  ( CMet ‘ 𝑋 ) ) | 
						
							| 2 |  | bfp.3 | ⊢ ( 𝜑  →  𝑋  ≠  ∅ ) | 
						
							| 3 |  | bfp.4 | ⊢ ( 𝜑  →  𝐾  ∈  ℝ+ ) | 
						
							| 4 |  | bfp.5 | ⊢ ( 𝜑  →  𝐾  <  1 ) | 
						
							| 5 |  | bfp.6 | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ 𝑋 ) | 
						
							| 6 |  | bfp.7 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) )  ≤  ( 𝐾  ·  ( 𝑥 𝐷 𝑦 ) ) ) | 
						
							| 7 |  | bfp.8 | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 8 |  | bfp.9 | ⊢ ( 𝜑  →  𝐴  ∈  𝑋 ) | 
						
							| 9 |  | bfp.10 | ⊢ 𝐺  =  seq 1 ( ( 𝐹  ∘  1st  ) ,  ( ℕ  ×  { 𝐴 } ) ) | 
						
							| 10 |  | cmetmet | ⊢ ( 𝐷  ∈  ( CMet ‘ 𝑋 )  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 11 | 1 10 | syl | ⊢ ( 𝜑  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 12 |  | metxmet | ⊢ ( 𝐷  ∈  ( Met ‘ 𝑋 )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 13 | 7 | mopntopon | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 14 | 11 12 13 | 3syl | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 15 | 1 2 3 4 5 6 7 8 9 | bfplem1 | ⊢ ( 𝜑  →  𝐺 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) | 
						
							| 16 |  | lmcl | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐺 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  →  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 )  ∈  𝑋 ) | 
						
							| 17 | 14 15 16 | syl2anc | ⊢ ( 𝜑  →  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 )  ∈  𝑋 ) | 
						
							| 18 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 19 | 18 12 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 20 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 21 |  | 1zzd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  1  ∈  ℤ ) | 
						
							| 22 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑘  ∈  ℕ )  →  ( 𝐺 ‘ 𝑘 )  =  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 23 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝐺 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) | 
						
							| 24 |  | rphalfcl | ⊢ ( 𝑥  ∈  ℝ+  →  ( 𝑥  /  2 )  ∈  ℝ+ ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( 𝑥  /  2 )  ∈  ℝ+ ) | 
						
							| 26 | 7 19 20 21 22 23 25 | lmmcvg | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐺 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  ( 𝑥  /  2 ) ) ) | 
						
							| 27 |  | simpr | ⊢ ( ( ( 𝐺 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  ( 𝑥  /  2 ) )  →  ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  ( 𝑥  /  2 ) ) | 
						
							| 28 | 27 | ralimi | ⊢ ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐺 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  ( 𝑥  /  2 ) )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  ( 𝑥  /  2 ) ) | 
						
							| 29 |  | nnz | ⊢ ( 𝑗  ∈  ℕ  →  𝑗  ∈  ℤ ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  𝑗  ∈  ℤ ) | 
						
							| 31 |  | uzid | ⊢ ( 𝑗  ∈  ℤ  →  𝑗  ∈  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 32 |  | fveq2 | ⊢ ( 𝑘  =  𝑗  →  ( 𝐺 ‘ 𝑘 )  =  ( 𝐺 ‘ 𝑗 ) ) | 
						
							| 33 | 32 | oveq1d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  =  ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) | 
						
							| 34 | 33 | breq1d | ⊢ ( 𝑘  =  𝑗  →  ( ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  ( 𝑥  /  2 )  ↔  ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  ( 𝑥  /  2 ) ) ) | 
						
							| 35 | 34 | rspcv | ⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 𝑗 )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  ( 𝑥  /  2 )  →  ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  ( 𝑥  /  2 ) ) ) | 
						
							| 36 | 30 31 35 | 3syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  ( 𝑥  /  2 )  →  ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  ( 𝑥  /  2 ) ) ) | 
						
							| 37 | 30 31 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  𝑗  ∈  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 38 |  | peano2uz | ⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 𝑗 )  →  ( 𝑗  +  1 )  ∈  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 39 |  | fveq2 | ⊢ ( 𝑘  =  ( 𝑗  +  1 )  →  ( 𝐺 ‘ 𝑘 )  =  ( 𝐺 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 40 | 39 | oveq1d | ⊢ ( 𝑘  =  ( 𝑗  +  1 )  →  ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  =  ( ( 𝐺 ‘ ( 𝑗  +  1 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) | 
						
							| 41 | 40 | breq1d | ⊢ ( 𝑘  =  ( 𝑗  +  1 )  →  ( ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  ( 𝑥  /  2 )  ↔  ( ( 𝐺 ‘ ( 𝑗  +  1 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  ( 𝑥  /  2 ) ) ) | 
						
							| 42 | 41 | rspcv | ⊢ ( ( 𝑗  +  1 )  ∈  ( ℤ≥ ‘ 𝑗 )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  ( 𝑥  /  2 )  →  ( ( 𝐺 ‘ ( 𝑗  +  1 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  ( 𝑥  /  2 ) ) ) | 
						
							| 43 | 37 38 42 | 3syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  ( 𝑥  /  2 )  →  ( ( 𝐺 ‘ ( 𝑗  +  1 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  ( 𝑥  /  2 ) ) ) | 
						
							| 44 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 45 | 20 9 44 8 5 | algrp1 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( 𝐺 ‘ ( 𝑗  +  1 ) )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) ) | 
						
							| 46 | 45 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  ( 𝐺 ‘ ( 𝑗  +  1 ) )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) ) | 
						
							| 47 | 46 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐺 ‘ ( 𝑗  +  1 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  =  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) | 
						
							| 48 | 47 | breq1d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  ( ( ( 𝐺 ‘ ( 𝑗  +  1 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  ( 𝑥  /  2 )  ↔  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  ( 𝑥  /  2 ) ) ) | 
						
							| 49 | 43 48 | sylibd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  ( 𝑥  /  2 )  →  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  ( 𝑥  /  2 ) ) ) | 
						
							| 50 | 36 49 | jcad | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  ( 𝑥  /  2 )  →  ( ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  ( 𝑥  /  2 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  ( 𝑥  /  2 ) ) ) ) | 
						
							| 51 | 11 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 52 | 20 9 44 8 5 | algrf | ⊢ ( 𝜑  →  𝐺 : ℕ ⟶ 𝑋 ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝐺 : ℕ ⟶ 𝑋 ) | 
						
							| 54 | 53 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  ( 𝐺 ‘ 𝑗 )  ∈  𝑋 ) | 
						
							| 55 | 17 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 )  ∈  𝑋 ) | 
						
							| 56 |  | metcl | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  ( 𝐺 ‘ 𝑗 )  ∈  𝑋  ∧  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 )  ∈  𝑋 )  →  ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  ∈  ℝ ) | 
						
							| 57 | 51 54 55 56 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  ∈  ℝ ) | 
						
							| 58 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  𝐹 : 𝑋 ⟶ 𝑋 ) | 
						
							| 59 | 58 54 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) )  ∈  𝑋 ) | 
						
							| 60 |  | metcl | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) )  ∈  𝑋  ∧  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 )  ∈  𝑋 )  →  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  ∈  ℝ ) | 
						
							| 61 | 51 59 55 60 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  ∈  ℝ ) | 
						
							| 62 |  | rpre | ⊢ ( 𝑥  ∈  ℝ+  →  𝑥  ∈  ℝ ) | 
						
							| 63 | 62 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  𝑥  ∈  ℝ ) | 
						
							| 64 |  | lt2halves | ⊢ ( ( ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  ∈  ℝ  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  ∈  ℝ  ∧  𝑥  ∈  ℝ )  →  ( ( ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  ( 𝑥  /  2 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  ( 𝑥  /  2 ) )  →  ( ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  +  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) )  <  𝑥 ) ) | 
						
							| 65 | 57 61 63 64 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  ( ( ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  ( 𝑥  /  2 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  ( 𝑥  /  2 ) )  →  ( ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  +  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) )  <  𝑥 ) ) | 
						
							| 66 | 5 17 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  ∈  𝑋 ) | 
						
							| 67 |  | metcl | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  ∈  𝑋  ∧  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 )  ∈  𝑋 )  →  ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  ∈  ℝ ) | 
						
							| 68 | 11 66 17 67 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  ∈  ℝ ) | 
						
							| 69 | 68 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  ∈  ℝ ) | 
						
							| 70 | 58 55 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  ∈  𝑋 ) | 
						
							| 71 |  | metcl | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) )  ∈  𝑋  ∧  ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  ∈  𝑋 )  →  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) )  ∈  ℝ ) | 
						
							| 72 | 51 59 70 71 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) )  ∈  ℝ ) | 
						
							| 73 | 72 61 | readdcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) )  +  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) )  ∈  ℝ ) | 
						
							| 74 | 57 61 | readdcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  ( ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  +  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) )  ∈  ℝ ) | 
						
							| 75 |  | mettri2 | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) )  ∈  𝑋  ∧  ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  ∈  𝑋  ∧  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 )  ∈  𝑋 ) )  →  ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  ≤  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) )  +  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ) | 
						
							| 76 | 51 59 70 55 75 | syl13anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  ≤  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) )  +  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ) | 
						
							| 77 | 3 | rpred | ⊢ ( 𝜑  →  𝐾  ∈  ℝ ) | 
						
							| 78 | 77 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  𝐾  ∈  ℝ ) | 
						
							| 79 | 78 57 | remulcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  ( 𝐾  ·  ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) )  ∈  ℝ ) | 
						
							| 80 | 54 55 | jca | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐺 ‘ 𝑗 )  ∈  𝑋  ∧  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 )  ∈  𝑋 ) ) | 
						
							| 81 | 6 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) )  ≤  ( 𝐾  ·  ( 𝑥 𝐷 𝑦 ) ) ) | 
						
							| 82 | 81 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) )  ≤  ( 𝐾  ·  ( 𝑥 𝐷 𝑦 ) ) ) | 
						
							| 83 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝐺 ‘ 𝑗 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) ) | 
						
							| 84 | 83 | oveq1d | ⊢ ( 𝑥  =  ( 𝐺 ‘ 𝑗 )  →  ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) )  =  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 85 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝐺 ‘ 𝑗 )  →  ( 𝑥 𝐷 𝑦 )  =  ( ( 𝐺 ‘ 𝑗 ) 𝐷 𝑦 ) ) | 
						
							| 86 | 85 | oveq2d | ⊢ ( 𝑥  =  ( 𝐺 ‘ 𝑗 )  →  ( 𝐾  ·  ( 𝑥 𝐷 𝑦 ) )  =  ( 𝐾  ·  ( ( 𝐺 ‘ 𝑗 ) 𝐷 𝑦 ) ) ) | 
						
							| 87 | 84 86 | breq12d | ⊢ ( 𝑥  =  ( 𝐺 ‘ 𝑗 )  →  ( ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) )  ≤  ( 𝐾  ·  ( 𝑥 𝐷 𝑦 ) )  ↔  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( 𝐹 ‘ 𝑦 ) )  ≤  ( 𝐾  ·  ( ( 𝐺 ‘ 𝑗 ) 𝐷 𝑦 ) ) ) ) | 
						
							| 88 |  | fveq2 | ⊢ ( 𝑦  =  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) | 
						
							| 89 | 88 | oveq2d | ⊢ ( 𝑦  =  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 )  →  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( 𝐹 ‘ 𝑦 ) )  =  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ) | 
						
							| 90 |  | oveq2 | ⊢ ( 𝑦  =  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 )  →  ( ( 𝐺 ‘ 𝑗 ) 𝐷 𝑦 )  =  ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) | 
						
							| 91 | 90 | oveq2d | ⊢ ( 𝑦  =  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 )  →  ( 𝐾  ·  ( ( 𝐺 ‘ 𝑗 ) 𝐷 𝑦 ) )  =  ( 𝐾  ·  ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ) | 
						
							| 92 | 89 91 | breq12d | ⊢ ( 𝑦  =  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 )  →  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( 𝐹 ‘ 𝑦 ) )  ≤  ( 𝐾  ·  ( ( 𝐺 ‘ 𝑗 ) 𝐷 𝑦 ) )  ↔  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) )  ≤  ( 𝐾  ·  ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ) ) | 
						
							| 93 | 87 92 | rspc2v | ⊢ ( ( ( 𝐺 ‘ 𝑗 )  ∈  𝑋  ∧  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 )  ∈  𝑋 )  →  ( ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) )  ≤  ( 𝐾  ·  ( 𝑥 𝐷 𝑦 ) )  →  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) )  ≤  ( 𝐾  ·  ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ) ) | 
						
							| 94 | 80 82 93 | sylc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) )  ≤  ( 𝐾  ·  ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ) | 
						
							| 95 |  | 1red | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  1  ∈  ℝ ) | 
						
							| 96 |  | metge0 | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  ( 𝐺 ‘ 𝑗 )  ∈  𝑋  ∧  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 )  ∈  𝑋 )  →  0  ≤  ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) | 
						
							| 97 | 51 54 55 96 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  0  ≤  ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) | 
						
							| 98 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 99 |  | ltle | ⊢ ( ( 𝐾  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( 𝐾  <  1  →  𝐾  ≤  1 ) ) | 
						
							| 100 | 77 98 99 | sylancl | ⊢ ( 𝜑  →  ( 𝐾  <  1  →  𝐾  ≤  1 ) ) | 
						
							| 101 | 4 100 | mpd | ⊢ ( 𝜑  →  𝐾  ≤  1 ) | 
						
							| 102 | 101 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  𝐾  ≤  1 ) | 
						
							| 103 | 78 95 57 97 102 | lemul1ad | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  ( 𝐾  ·  ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) )  ≤  ( 1  ·  ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ) | 
						
							| 104 | 57 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  ∈  ℂ ) | 
						
							| 105 | 104 | mullidd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  ( 1  ·  ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) )  =  ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) | 
						
							| 106 | 103 105 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  ( 𝐾  ·  ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) )  ≤  ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) | 
						
							| 107 | 72 79 57 94 106 | letrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) )  ≤  ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) | 
						
							| 108 | 72 57 61 107 | leadd1dd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) )  +  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) )  ≤  ( ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  +  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ) | 
						
							| 109 | 69 73 74 76 108 | letrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  ≤  ( ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  +  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ) | 
						
							| 110 |  | lelttr | ⊢ ( ( ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  ∈  ℝ  ∧  ( ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  +  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) )  ∈  ℝ  ∧  𝑥  ∈  ℝ )  →  ( ( ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  ≤  ( ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  +  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) )  ∧  ( ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  +  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) )  <  𝑥 )  →  ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  𝑥 ) ) | 
						
							| 111 | 69 74 63 110 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  ( ( ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  ≤  ( ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  +  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) )  ∧  ( ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  +  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) )  <  𝑥 )  →  ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  𝑥 ) ) | 
						
							| 112 | 109 111 | mpand | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  ( ( ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  +  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) )  <  𝑥  →  ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  𝑥 ) ) | 
						
							| 113 | 50 65 112 | 3syld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  ( 𝑥  /  2 )  →  ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  𝑥 ) ) | 
						
							| 114 | 28 113 | syl5 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐺 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  ( 𝑥  /  2 ) )  →  ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  𝑥 ) ) | 
						
							| 115 | 114 | rexlimdva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐺 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  ( 𝑥  /  2 ) )  →  ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  𝑥 ) ) | 
						
							| 116 | 26 115 | mpd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  𝑥 ) | 
						
							| 117 |  | ltle | ⊢ ( ( ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  ∈  ℝ  ∧  𝑥  ∈  ℝ )  →  ( ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  𝑥  →  ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  ≤  𝑥 ) ) | 
						
							| 118 | 68 62 117 | syl2an | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  <  𝑥  →  ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  ≤  𝑥 ) ) | 
						
							| 119 | 116 118 | mpd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  ≤  𝑥 ) | 
						
							| 120 | 62 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝑥  ∈  ℝ ) | 
						
							| 121 | 120 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝑥  ∈  ℂ ) | 
						
							| 122 | 121 | addlidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( 0  +  𝑥 )  =  𝑥 ) | 
						
							| 123 | 119 122 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  ≤  ( 0  +  𝑥 ) ) | 
						
							| 124 | 123 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ+ ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  ≤  ( 0  +  𝑥 ) ) | 
						
							| 125 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 126 |  | alrple | ⊢ ( ( ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  ≤  0  ↔  ∀ 𝑥  ∈  ℝ+ ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  ≤  ( 0  +  𝑥 ) ) ) | 
						
							| 127 | 68 125 126 | sylancl | ⊢ ( 𝜑  →  ( ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  ≤  0  ↔  ∀ 𝑥  ∈  ℝ+ ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  ≤  ( 0  +  𝑥 ) ) ) | 
						
							| 128 | 124 127 | mpbird | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  ≤  0 ) | 
						
							| 129 |  | metge0 | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  ∈  𝑋  ∧  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 )  ∈  𝑋 )  →  0  ≤  ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) | 
						
							| 130 | 11 66 17 129 | syl3anc | ⊢ ( 𝜑  →  0  ≤  ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) | 
						
							| 131 |  | letri3 | ⊢ ( ( ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  =  0  ↔  ( ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  ≤  0  ∧  0  ≤  ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ) ) | 
						
							| 132 | 68 125 131 | sylancl | ⊢ ( 𝜑  →  ( ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  =  0  ↔  ( ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  ≤  0  ∧  0  ≤  ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ) ) | 
						
							| 133 | 128 130 132 | mpbir2and | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  =  0 ) | 
						
							| 134 |  | meteq0 | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  ∈  𝑋  ∧  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 )  ∈  𝑋 )  →  ( ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  =  0  ↔  ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  =  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) | 
						
							| 135 | 11 66 17 134 | syl3anc | ⊢ ( 𝜑  →  ( ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  =  0  ↔  ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  =  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) | 
						
							| 136 | 133 135 | mpbid | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  =  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) | 
						
							| 137 |  | fveq2 | ⊢ ( 𝑧  =  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) | 
						
							| 138 |  | id | ⊢ ( 𝑧  =  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 )  →  𝑧  =  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) | 
						
							| 139 | 137 138 | eqeq12d | ⊢ ( 𝑧  =  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 )  →  ( ( 𝐹 ‘ 𝑧 )  =  𝑧  ↔  ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  =  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) | 
						
							| 140 | 139 | rspcev | ⊢ ( ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 )  ∈  𝑋  ∧  ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  =  ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) )  →  ∃ 𝑧  ∈  𝑋 ( 𝐹 ‘ 𝑧 )  =  𝑧 ) | 
						
							| 141 | 17 136 140 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑧  ∈  𝑋 ( 𝐹 ‘ 𝑧 )  =  𝑧 ) |