| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bfp.2 |
⊢ ( 𝜑 → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
| 2 |
|
bfp.3 |
⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
| 3 |
|
bfp.4 |
⊢ ( 𝜑 → 𝐾 ∈ ℝ+ ) |
| 4 |
|
bfp.5 |
⊢ ( 𝜑 → 𝐾 < 1 ) |
| 5 |
|
bfp.6 |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑋 ) |
| 6 |
|
bfp.7 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐾 · ( 𝑥 𝐷 𝑦 ) ) ) |
| 7 |
|
bfp.8 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
| 8 |
|
bfp.9 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
| 9 |
|
bfp.10 |
⊢ 𝐺 = seq 1 ( ( 𝐹 ∘ 1st ) , ( ℕ × { 𝐴 } ) ) |
| 10 |
|
cmetmet |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 11 |
1 10
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 12 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 13 |
7
|
mopntopon |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 14 |
11 12 13
|
3syl |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 15 |
1 2 3 4 5 6 7 8 9
|
bfplem1 |
⊢ ( 𝜑 → 𝐺 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) |
| 16 |
|
lmcl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐺 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) → ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ∈ 𝑋 ) |
| 17 |
14 15 16
|
syl2anc |
⊢ ( 𝜑 → ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ∈ 𝑋 ) |
| 18 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 19 |
18 12
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 20 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 21 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 1 ∈ ℤ ) |
| 22 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 23 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝐺 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) |
| 24 |
|
rphalfcl |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 / 2 ) ∈ ℝ+ ) |
| 25 |
24
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 / 2 ) ∈ ℝ+ ) |
| 26 |
7 19 20 21 22 23 25
|
lmmcvg |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < ( 𝑥 / 2 ) ) ) |
| 27 |
|
simpr |
⊢ ( ( ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < ( 𝑥 / 2 ) ) → ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < ( 𝑥 / 2 ) ) |
| 28 |
27
|
ralimi |
⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < ( 𝑥 / 2 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < ( 𝑥 / 2 ) ) |
| 29 |
|
nnz |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℤ ) |
| 30 |
29
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℤ ) |
| 31 |
|
uzid |
⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
| 32 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑗 ) ) |
| 33 |
32
|
oveq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) = ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) |
| 34 |
33
|
breq1d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < ( 𝑥 / 2 ) ↔ ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < ( 𝑥 / 2 ) ) ) |
| 35 |
34
|
rspcv |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < ( 𝑥 / 2 ) → ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < ( 𝑥 / 2 ) ) ) |
| 36 |
30 31 35
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < ( 𝑥 / 2 ) → ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < ( 𝑥 / 2 ) ) ) |
| 37 |
30 31
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
| 38 |
|
peano2uz |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) |
| 39 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) |
| 40 |
39
|
oveq1d |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) = ( ( 𝐺 ‘ ( 𝑗 + 1 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) |
| 41 |
40
|
breq1d |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < ( 𝑥 / 2 ) ↔ ( ( 𝐺 ‘ ( 𝑗 + 1 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < ( 𝑥 / 2 ) ) ) |
| 42 |
41
|
rspcv |
⊢ ( ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 𝑗 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < ( 𝑥 / 2 ) → ( ( 𝐺 ‘ ( 𝑗 + 1 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < ( 𝑥 / 2 ) ) ) |
| 43 |
37 38 42
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < ( 𝑥 / 2 ) → ( ( 𝐺 ‘ ( 𝑗 + 1 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < ( 𝑥 / 2 ) ) ) |
| 44 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 45 |
20 9 44 8 5
|
algrp1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐺 ‘ ( 𝑗 + 1 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) ) |
| 46 |
45
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ( 𝐺 ‘ ( 𝑗 + 1 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) ) |
| 47 |
46
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐺 ‘ ( 𝑗 + 1 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) |
| 48 |
47
|
breq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ( ( ( 𝐺 ‘ ( 𝑗 + 1 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < ( 𝑥 / 2 ) ↔ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < ( 𝑥 / 2 ) ) ) |
| 49 |
43 48
|
sylibd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < ( 𝑥 / 2 ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < ( 𝑥 / 2 ) ) ) |
| 50 |
36 49
|
jcad |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < ( 𝑥 / 2 ) → ( ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < ( 𝑥 / 2 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < ( 𝑥 / 2 ) ) ) ) |
| 51 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 52 |
20 9 44 8 5
|
algrf |
⊢ ( 𝜑 → 𝐺 : ℕ ⟶ 𝑋 ) |
| 53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝐺 : ℕ ⟶ 𝑋 ) |
| 54 |
53
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ( 𝐺 ‘ 𝑗 ) ∈ 𝑋 ) |
| 55 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ∈ 𝑋 ) |
| 56 |
|
metcl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐺 ‘ 𝑗 ) ∈ 𝑋 ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ∈ 𝑋 ) → ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ∈ ℝ ) |
| 57 |
51 54 55 56
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ∈ ℝ ) |
| 58 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → 𝐹 : 𝑋 ⟶ 𝑋 ) |
| 59 |
58 54
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ 𝑋 ) |
| 60 |
|
metcl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ 𝑋 ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ∈ ℝ ) |
| 61 |
51 59 55 60
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ∈ ℝ ) |
| 62 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
| 63 |
62
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → 𝑥 ∈ ℝ ) |
| 64 |
|
lt2halves |
⊢ ( ( ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ∈ ℝ ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < ( 𝑥 / 2 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < ( 𝑥 / 2 ) ) → ( ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) + ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) < 𝑥 ) ) |
| 65 |
57 61 63 64
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ( ( ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < ( 𝑥 / 2 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < ( 𝑥 / 2 ) ) → ( ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) + ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) < 𝑥 ) ) |
| 66 |
5 17
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ∈ 𝑋 ) |
| 67 |
|
metcl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ∈ 𝑋 ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ∈ ℝ ) |
| 68 |
11 66 17 67
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ∈ ℝ ) |
| 69 |
68
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ∈ ℝ ) |
| 70 |
58 55
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ∈ 𝑋 ) |
| 71 |
|
metcl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ 𝑋 ∧ ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ∈ 𝑋 ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ∈ ℝ ) |
| 72 |
51 59 70 71
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ∈ ℝ ) |
| 73 |
72 61
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) + ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ∈ ℝ ) |
| 74 |
57 61
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ( ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) + ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ∈ ℝ ) |
| 75 |
|
mettri2 |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ 𝑋 ∧ ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ∈ 𝑋 ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ∈ 𝑋 ) ) → ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ≤ ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) + ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ) |
| 76 |
51 59 70 55 75
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ≤ ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) + ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ) |
| 77 |
3
|
rpred |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
| 78 |
77
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → 𝐾 ∈ ℝ ) |
| 79 |
78 57
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ( 𝐾 · ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ∈ ℝ ) |
| 80 |
54 55
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐺 ‘ 𝑗 ) ∈ 𝑋 ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ∈ 𝑋 ) ) |
| 81 |
6
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐾 · ( 𝑥 𝐷 𝑦 ) ) ) |
| 82 |
81
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐾 · ( 𝑥 𝐷 𝑦 ) ) ) |
| 83 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑗 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) ) |
| 84 |
83
|
oveq1d |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑗 ) → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) ) |
| 85 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑗 ) → ( 𝑥 𝐷 𝑦 ) = ( ( 𝐺 ‘ 𝑗 ) 𝐷 𝑦 ) ) |
| 86 |
85
|
oveq2d |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑗 ) → ( 𝐾 · ( 𝑥 𝐷 𝑦 ) ) = ( 𝐾 · ( ( 𝐺 ‘ 𝑗 ) 𝐷 𝑦 ) ) ) |
| 87 |
84 86
|
breq12d |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑗 ) → ( ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐾 · ( 𝑥 𝐷 𝑦 ) ) ↔ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐾 · ( ( 𝐺 ‘ 𝑗 ) 𝐷 𝑦 ) ) ) ) |
| 88 |
|
fveq2 |
⊢ ( 𝑦 = ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) |
| 89 |
88
|
oveq2d |
⊢ ( 𝑦 = ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ) |
| 90 |
|
oveq2 |
⊢ ( 𝑦 = ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) → ( ( 𝐺 ‘ 𝑗 ) 𝐷 𝑦 ) = ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) |
| 91 |
90
|
oveq2d |
⊢ ( 𝑦 = ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) → ( 𝐾 · ( ( 𝐺 ‘ 𝑗 ) 𝐷 𝑦 ) ) = ( 𝐾 · ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ) |
| 92 |
89 91
|
breq12d |
⊢ ( 𝑦 = ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) → ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐾 · ( ( 𝐺 ‘ 𝑗 ) 𝐷 𝑦 ) ) ↔ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ≤ ( 𝐾 · ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ) ) |
| 93 |
87 92
|
rspc2v |
⊢ ( ( ( 𝐺 ‘ 𝑗 ) ∈ 𝑋 ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐾 · ( 𝑥 𝐷 𝑦 ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ≤ ( 𝐾 · ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ) ) |
| 94 |
80 82 93
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ≤ ( 𝐾 · ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ) |
| 95 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → 1 ∈ ℝ ) |
| 96 |
|
metge0 |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐺 ‘ 𝑗 ) ∈ 𝑋 ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ∈ 𝑋 ) → 0 ≤ ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) |
| 97 |
51 54 55 96
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → 0 ≤ ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) |
| 98 |
|
1re |
⊢ 1 ∈ ℝ |
| 99 |
|
ltle |
⊢ ( ( 𝐾 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝐾 < 1 → 𝐾 ≤ 1 ) ) |
| 100 |
77 98 99
|
sylancl |
⊢ ( 𝜑 → ( 𝐾 < 1 → 𝐾 ≤ 1 ) ) |
| 101 |
4 100
|
mpd |
⊢ ( 𝜑 → 𝐾 ≤ 1 ) |
| 102 |
101
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → 𝐾 ≤ 1 ) |
| 103 |
78 95 57 97 102
|
lemul1ad |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ( 𝐾 · ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ≤ ( 1 · ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ) |
| 104 |
57
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ∈ ℂ ) |
| 105 |
104
|
mullidd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ( 1 · ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) = ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) |
| 106 |
103 105
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ( 𝐾 · ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ≤ ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) |
| 107 |
72 79 57 94 106
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ≤ ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) |
| 108 |
72 57 61 107
|
leadd1dd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) + ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ≤ ( ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) + ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ) |
| 109 |
69 73 74 76 108
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ≤ ( ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) + ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ) |
| 110 |
|
lelttr |
⊢ ( ( ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ∈ ℝ ∧ ( ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) + ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ≤ ( ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) + ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ∧ ( ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) + ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) < 𝑥 ) → ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < 𝑥 ) ) |
| 111 |
69 74 63 110
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ( ( ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ≤ ( ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) + ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ∧ ( ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) + ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) < 𝑥 ) → ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < 𝑥 ) ) |
| 112 |
109 111
|
mpand |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ( ( ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) + ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑗 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) < 𝑥 → ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < 𝑥 ) ) |
| 113 |
50 65 112
|
3syld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < ( 𝑥 / 2 ) → ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < 𝑥 ) ) |
| 114 |
28 113
|
syl5 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < ( 𝑥 / 2 ) ) → ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < 𝑥 ) ) |
| 115 |
114
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < ( 𝑥 / 2 ) ) → ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < 𝑥 ) ) |
| 116 |
26 115
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < 𝑥 ) |
| 117 |
|
ltle |
⊢ ( ( ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < 𝑥 → ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ≤ 𝑥 ) ) |
| 118 |
68 62 117
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) < 𝑥 → ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ≤ 𝑥 ) ) |
| 119 |
116 118
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ≤ 𝑥 ) |
| 120 |
62
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ ) |
| 121 |
120
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℂ ) |
| 122 |
121
|
addlidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 0 + 𝑥 ) = 𝑥 ) |
| 123 |
119 122
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ≤ ( 0 + 𝑥 ) ) |
| 124 |
123
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ≤ ( 0 + 𝑥 ) ) |
| 125 |
|
0re |
⊢ 0 ∈ ℝ |
| 126 |
|
alrple |
⊢ ( ( ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ≤ 0 ↔ ∀ 𝑥 ∈ ℝ+ ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ≤ ( 0 + 𝑥 ) ) ) |
| 127 |
68 125 126
|
sylancl |
⊢ ( 𝜑 → ( ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ≤ 0 ↔ ∀ 𝑥 ∈ ℝ+ ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ≤ ( 0 + 𝑥 ) ) ) |
| 128 |
124 127
|
mpbird |
⊢ ( 𝜑 → ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ≤ 0 ) |
| 129 |
|
metge0 |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ∈ 𝑋 ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ∈ 𝑋 ) → 0 ≤ ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) |
| 130 |
11 66 17 129
|
syl3anc |
⊢ ( 𝜑 → 0 ≤ ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) |
| 131 |
|
letri3 |
⊢ ( ( ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) = 0 ↔ ( ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ≤ 0 ∧ 0 ≤ ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ) ) |
| 132 |
68 125 131
|
sylancl |
⊢ ( 𝜑 → ( ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) = 0 ↔ ( ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ≤ 0 ∧ 0 ≤ ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) ) ) |
| 133 |
128 130 132
|
mpbir2and |
⊢ ( 𝜑 → ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) = 0 ) |
| 134 |
|
meteq0 |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ∈ 𝑋 ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ∈ 𝑋 ) → ( ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) = 0 ↔ ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) = ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) |
| 135 |
11 66 17 134
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) 𝐷 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) = 0 ↔ ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) = ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) |
| 136 |
133 135
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) = ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) |
| 137 |
|
fveq2 |
⊢ ( 𝑧 = ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) |
| 138 |
|
id |
⊢ ( 𝑧 = ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) → 𝑧 = ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) |
| 139 |
137 138
|
eqeq12d |
⊢ ( 𝑧 = ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) → ( ( 𝐹 ‘ 𝑧 ) = 𝑧 ↔ ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) = ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) |
| 140 |
139
|
rspcev |
⊢ ( ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ∈ 𝑋 ∧ ( 𝐹 ‘ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) = ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) → ∃ 𝑧 ∈ 𝑋 ( 𝐹 ‘ 𝑧 ) = 𝑧 ) |
| 141 |
17 136 140
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝑋 ( 𝐹 ‘ 𝑧 ) = 𝑧 ) |