| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bfp.2 | ⊢ ( 𝜑  →  𝐷  ∈  ( CMet ‘ 𝑋 ) ) | 
						
							| 2 |  | bfp.3 | ⊢ ( 𝜑  →  𝑋  ≠  ∅ ) | 
						
							| 3 |  | bfp.4 | ⊢ ( 𝜑  →  𝐾  ∈  ℝ+ ) | 
						
							| 4 |  | bfp.5 | ⊢ ( 𝜑  →  𝐾  <  1 ) | 
						
							| 5 |  | bfp.6 | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ 𝑋 ) | 
						
							| 6 |  | bfp.7 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) )  ≤  ( 𝐾  ·  ( 𝑥 𝐷 𝑦 ) ) ) | 
						
							| 7 |  | bfp.8 | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 8 |  | bfp.9 | ⊢ ( 𝜑  →  𝐴  ∈  𝑋 ) | 
						
							| 9 |  | bfp.10 | ⊢ 𝐺  =  seq 1 ( ( 𝐹  ∘  1st  ) ,  ( ℕ  ×  { 𝐴 } ) ) | 
						
							| 10 |  | cmetmet | ⊢ ( 𝐷  ∈  ( CMet ‘ 𝑋 )  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 11 | 1 10 | syl | ⊢ ( 𝜑  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 12 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 13 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 14 | 12 9 13 8 5 | algrf | ⊢ ( 𝜑  →  𝐺 : ℕ ⟶ 𝑋 ) | 
						
							| 15 | 5 8 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐴 )  ∈  𝑋 ) | 
						
							| 16 |  | metcl | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  ( 𝐹 ‘ 𝐴 )  ∈  𝑋 )  →  ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 17 | 11 8 15 16 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 18 | 17 3 | rerpdivcld | ⊢ ( 𝜑  →  ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ∈  ℝ ) | 
						
							| 19 |  | fveq2 | ⊢ ( 𝑗  =  1  →  ( 𝐺 ‘ 𝑗 )  =  ( 𝐺 ‘ 1 ) ) | 
						
							| 20 |  | fvoveq1 | ⊢ ( 𝑗  =  1  →  ( 𝐺 ‘ ( 𝑗  +  1 ) )  =  ( 𝐺 ‘ ( 1  +  1 ) ) ) | 
						
							| 21 | 19 20 | oveq12d | ⊢ ( 𝑗  =  1  →  ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( 𝐺 ‘ ( 𝑗  +  1 ) ) )  =  ( ( 𝐺 ‘ 1 ) 𝐷 ( 𝐺 ‘ ( 1  +  1 ) ) ) ) | 
						
							| 22 |  | oveq2 | ⊢ ( 𝑗  =  1  →  ( 𝐾 ↑ 𝑗 )  =  ( 𝐾 ↑ 1 ) ) | 
						
							| 23 | 22 | oveq2d | ⊢ ( 𝑗  =  1  →  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ 𝑗 ) )  =  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ 1 ) ) ) | 
						
							| 24 | 21 23 | breq12d | ⊢ ( 𝑗  =  1  →  ( ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( 𝐺 ‘ ( 𝑗  +  1 ) ) )  ≤  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ 𝑗 ) )  ↔  ( ( 𝐺 ‘ 1 ) 𝐷 ( 𝐺 ‘ ( 1  +  1 ) ) )  ≤  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ 1 ) ) ) ) | 
						
							| 25 | 24 | imbi2d | ⊢ ( 𝑗  =  1  →  ( ( 𝜑  →  ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( 𝐺 ‘ ( 𝑗  +  1 ) ) )  ≤  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ 𝑗 ) ) )  ↔  ( 𝜑  →  ( ( 𝐺 ‘ 1 ) 𝐷 ( 𝐺 ‘ ( 1  +  1 ) ) )  ≤  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ 1 ) ) ) ) ) | 
						
							| 26 |  | fveq2 | ⊢ ( 𝑗  =  𝑘  →  ( 𝐺 ‘ 𝑗 )  =  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 27 |  | fvoveq1 | ⊢ ( 𝑗  =  𝑘  →  ( 𝐺 ‘ ( 𝑗  +  1 ) )  =  ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 28 | 26 27 | oveq12d | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( 𝐺 ‘ ( 𝑗  +  1 ) ) )  =  ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 29 |  | oveq2 | ⊢ ( 𝑗  =  𝑘  →  ( 𝐾 ↑ 𝑗 )  =  ( 𝐾 ↑ 𝑘 ) ) | 
						
							| 30 | 29 | oveq2d | ⊢ ( 𝑗  =  𝑘  →  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ 𝑗 ) )  =  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ 𝑘 ) ) ) | 
						
							| 31 | 28 30 | breq12d | ⊢ ( 𝑗  =  𝑘  →  ( ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( 𝐺 ‘ ( 𝑗  +  1 ) ) )  ≤  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ 𝑗 ) )  ↔  ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘  +  1 ) ) )  ≤  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ 𝑘 ) ) ) ) | 
						
							| 32 | 31 | imbi2d | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝜑  →  ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( 𝐺 ‘ ( 𝑗  +  1 ) ) )  ≤  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ 𝑗 ) ) )  ↔  ( 𝜑  →  ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘  +  1 ) ) )  ≤  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ 𝑘 ) ) ) ) ) | 
						
							| 33 |  | fveq2 | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( 𝐺 ‘ 𝑗 )  =  ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 34 |  | fvoveq1 | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( 𝐺 ‘ ( 𝑗  +  1 ) )  =  ( 𝐺 ‘ ( ( 𝑘  +  1 )  +  1 ) ) ) | 
						
							| 35 | 33 34 | oveq12d | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( 𝐺 ‘ ( 𝑗  +  1 ) ) )  =  ( ( 𝐺 ‘ ( 𝑘  +  1 ) ) 𝐷 ( 𝐺 ‘ ( ( 𝑘  +  1 )  +  1 ) ) ) ) | 
						
							| 36 |  | oveq2 | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( 𝐾 ↑ 𝑗 )  =  ( 𝐾 ↑ ( 𝑘  +  1 ) ) ) | 
						
							| 37 | 36 | oveq2d | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ 𝑗 ) )  =  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ ( 𝑘  +  1 ) ) ) ) | 
						
							| 38 | 35 37 | breq12d | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( 𝐺 ‘ ( 𝑗  +  1 ) ) )  ≤  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ 𝑗 ) )  ↔  ( ( 𝐺 ‘ ( 𝑘  +  1 ) ) 𝐷 ( 𝐺 ‘ ( ( 𝑘  +  1 )  +  1 ) ) )  ≤  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 39 | 38 | imbi2d | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( ( 𝜑  →  ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( 𝐺 ‘ ( 𝑗  +  1 ) ) )  ≤  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ 𝑗 ) ) )  ↔  ( 𝜑  →  ( ( 𝐺 ‘ ( 𝑘  +  1 ) ) 𝐷 ( 𝐺 ‘ ( ( 𝑘  +  1 )  +  1 ) ) )  ≤  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 40 | 17 | leidd | ⊢ ( 𝜑  →  ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  ≤  ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 41 | 12 9 13 8 | algr0 | ⊢ ( 𝜑  →  ( 𝐺 ‘ 1 )  =  𝐴 ) | 
						
							| 42 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 43 | 12 9 13 8 5 | algrp1 | ⊢ ( ( 𝜑  ∧  1  ∈  ℕ )  →  ( 𝐺 ‘ ( 1  +  1 ) )  =  ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) ) | 
						
							| 44 | 42 43 | mpan2 | ⊢ ( 𝜑  →  ( 𝐺 ‘ ( 1  +  1 ) )  =  ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) ) | 
						
							| 45 | 41 | fveq2d | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 𝐺 ‘ 1 ) )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 46 | 44 45 | eqtrd | ⊢ ( 𝜑  →  ( 𝐺 ‘ ( 1  +  1 ) )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 47 | 41 46 | oveq12d | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 1 ) 𝐷 ( 𝐺 ‘ ( 1  +  1 ) ) )  =  ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 48 | 3 | rpred | ⊢ ( 𝜑  →  𝐾  ∈  ℝ ) | 
						
							| 49 | 48 | recnd | ⊢ ( 𝜑  →  𝐾  ∈  ℂ ) | 
						
							| 50 | 49 | exp1d | ⊢ ( 𝜑  →  ( 𝐾 ↑ 1 )  =  𝐾 ) | 
						
							| 51 | 50 | oveq2d | ⊢ ( 𝜑  →  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ 1 ) )  =  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  𝐾 ) ) | 
						
							| 52 | 17 | recnd | ⊢ ( 𝜑  →  ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 53 | 3 | rpne0d | ⊢ ( 𝜑  →  𝐾  ≠  0 ) | 
						
							| 54 | 52 49 53 | divcan1d | ⊢ ( 𝜑  →  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  𝐾 )  =  ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 55 | 51 54 | eqtrd | ⊢ ( 𝜑  →  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ 1 ) )  =  ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 56 | 40 47 55 | 3brtr4d | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 1 ) 𝐷 ( 𝐺 ‘ ( 1  +  1 ) ) )  ≤  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ 1 ) ) ) | 
						
							| 57 | 14 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐺 ‘ 𝑘 )  ∈  𝑋 ) | 
						
							| 58 |  | peano2nn | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝑘  +  1 )  ∈  ℕ ) | 
						
							| 59 |  | ffvelcdm | ⊢ ( ( 𝐺 : ℕ ⟶ 𝑋  ∧  ( 𝑘  +  1 )  ∈  ℕ )  →  ( 𝐺 ‘ ( 𝑘  +  1 ) )  ∈  𝑋 ) | 
						
							| 60 | 14 58 59 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐺 ‘ ( 𝑘  +  1 ) )  ∈  𝑋 ) | 
						
							| 61 | 57 60 | jca | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐺 ‘ 𝑘 )  ∈  𝑋  ∧  ( 𝐺 ‘ ( 𝑘  +  1 ) )  ∈  𝑋 ) ) | 
						
							| 62 | 6 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) )  ≤  ( 𝐾  ·  ( 𝑥 𝐷 𝑦 ) ) ) | 
						
							| 63 | 62 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) )  ≤  ( 𝐾  ·  ( 𝑥 𝐷 𝑦 ) ) ) | 
						
							| 64 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝐺 ‘ 𝑘 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 65 | 64 | oveq1d | ⊢ ( 𝑥  =  ( 𝐺 ‘ 𝑘 )  →  ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) )  =  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 66 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝐺 ‘ 𝑘 )  →  ( 𝑥 𝐷 𝑦 )  =  ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) ) | 
						
							| 67 | 66 | oveq2d | ⊢ ( 𝑥  =  ( 𝐺 ‘ 𝑘 )  →  ( 𝐾  ·  ( 𝑥 𝐷 𝑦 ) )  =  ( 𝐾  ·  ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) ) ) | 
						
							| 68 | 65 67 | breq12d | ⊢ ( 𝑥  =  ( 𝐺 ‘ 𝑘 )  →  ( ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) )  ≤  ( 𝐾  ·  ( 𝑥 𝐷 𝑦 ) )  ↔  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) 𝐷 ( 𝐹 ‘ 𝑦 ) )  ≤  ( 𝐾  ·  ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) ) ) ) | 
						
							| 69 |  | fveq2 | ⊢ ( 𝑦  =  ( 𝐺 ‘ ( 𝑘  +  1 ) )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 70 | 69 | oveq2d | ⊢ ( 𝑦  =  ( 𝐺 ‘ ( 𝑘  +  1 ) )  →  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) 𝐷 ( 𝐹 ‘ 𝑦 ) )  =  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) 𝐷 ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 71 |  | oveq2 | ⊢ ( 𝑦  =  ( 𝐺 ‘ ( 𝑘  +  1 ) )  →  ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 )  =  ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 72 | 71 | oveq2d | ⊢ ( 𝑦  =  ( 𝐺 ‘ ( 𝑘  +  1 ) )  →  ( 𝐾  ·  ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) )  =  ( 𝐾  ·  ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 73 | 70 72 | breq12d | ⊢ ( 𝑦  =  ( 𝐺 ‘ ( 𝑘  +  1 ) )  →  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) 𝐷 ( 𝐹 ‘ 𝑦 ) )  ≤  ( 𝐾  ·  ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) )  ↔  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) 𝐷 ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) )  ≤  ( 𝐾  ·  ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 74 | 68 73 | rspc2v | ⊢ ( ( ( 𝐺 ‘ 𝑘 )  ∈  𝑋  ∧  ( 𝐺 ‘ ( 𝑘  +  1 ) )  ∈  𝑋 )  →  ( ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) )  ≤  ( 𝐾  ·  ( 𝑥 𝐷 𝑦 ) )  →  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) 𝐷 ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) )  ≤  ( 𝐾  ·  ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 75 | 61 63 74 | sylc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) 𝐷 ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) )  ≤  ( 𝐾  ·  ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 76 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 77 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝐹 : 𝑋 ⟶ 𝑋 ) | 
						
							| 78 | 77 57 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) )  ∈  𝑋 ) | 
						
							| 79 | 77 60 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑘  +  1 ) ) )  ∈  𝑋 ) | 
						
							| 80 |  | metcl | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) )  ∈  𝑋  ∧  ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑘  +  1 ) ) )  ∈  𝑋 )  →  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) 𝐷 ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) )  ∈  ℝ ) | 
						
							| 81 | 76 78 79 80 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) 𝐷 ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) )  ∈  ℝ ) | 
						
							| 82 | 48 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝐾  ∈  ℝ ) | 
						
							| 83 |  | metcl | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  ( 𝐺 ‘ 𝑘 )  ∈  𝑋  ∧  ( 𝐺 ‘ ( 𝑘  +  1 ) )  ∈  𝑋 )  →  ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘  +  1 ) ) )  ∈  ℝ ) | 
						
							| 84 | 76 57 60 83 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘  +  1 ) ) )  ∈  ℝ ) | 
						
							| 85 | 82 84 | remulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐾  ·  ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) )  ∈  ℝ ) | 
						
							| 86 | 18 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ∈  ℝ ) | 
						
							| 87 | 58 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑘  +  1 )  ∈  ℕ ) | 
						
							| 88 | 87 | nnnn0d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑘  +  1 )  ∈  ℕ0 ) | 
						
							| 89 | 82 88 | reexpcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐾 ↑ ( 𝑘  +  1 ) )  ∈  ℝ ) | 
						
							| 90 | 86 89 | remulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ ( 𝑘  +  1 ) ) )  ∈  ℝ ) | 
						
							| 91 |  | letr | ⊢ ( ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) 𝐷 ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) )  ∈  ℝ  ∧  ( 𝐾  ·  ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) )  ∈  ℝ  ∧  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ ( 𝑘  +  1 ) ) )  ∈  ℝ )  →  ( ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) 𝐷 ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) )  ≤  ( 𝐾  ·  ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) )  ∧  ( 𝐾  ·  ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) )  ≤  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ ( 𝑘  +  1 ) ) ) )  →  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) 𝐷 ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) )  ≤  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 92 | 81 85 90 91 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) 𝐷 ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) )  ≤  ( 𝐾  ·  ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) )  ∧  ( 𝐾  ·  ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) )  ≤  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ ( 𝑘  +  1 ) ) ) )  →  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) 𝐷 ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) )  ≤  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 93 | 75 92 | mpand | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐾  ·  ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) )  ≤  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ ( 𝑘  +  1 ) ) )  →  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) 𝐷 ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) )  ≤  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 94 |  | nnnn0 | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℕ0 ) | 
						
							| 95 |  | reexpcl | ⊢ ( ( 𝐾  ∈  ℝ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐾 ↑ 𝑘 )  ∈  ℝ ) | 
						
							| 96 | 48 94 95 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐾 ↑ 𝑘 )  ∈  ℝ ) | 
						
							| 97 | 86 96 | remulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ 𝑘 ) )  ∈  ℝ ) | 
						
							| 98 | 3 | rpgt0d | ⊢ ( 𝜑  →  0  <  𝐾 ) | 
						
							| 99 | 98 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  0  <  𝐾 ) | 
						
							| 100 |  | lemul1 | ⊢ ( ( ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘  +  1 ) ) )  ∈  ℝ  ∧  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ 𝑘 ) )  ∈  ℝ  ∧  ( 𝐾  ∈  ℝ  ∧  0  <  𝐾 ) )  →  ( ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘  +  1 ) ) )  ≤  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ 𝑘 ) )  ↔  ( ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘  +  1 ) ) )  ·  𝐾 )  ≤  ( ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ 𝑘 ) )  ·  𝐾 ) ) ) | 
						
							| 101 | 84 97 82 99 100 | syl112anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘  +  1 ) ) )  ≤  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ 𝑘 ) )  ↔  ( ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘  +  1 ) ) )  ·  𝐾 )  ≤  ( ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ 𝑘 ) )  ·  𝐾 ) ) ) | 
						
							| 102 | 84 | recnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘  +  1 ) ) )  ∈  ℂ ) | 
						
							| 103 | 49 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝐾  ∈  ℂ ) | 
						
							| 104 | 102 103 | mulcomd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘  +  1 ) ) )  ·  𝐾 )  =  ( 𝐾  ·  ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 105 | 86 | recnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ∈  ℂ ) | 
						
							| 106 | 96 | recnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐾 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 107 | 105 106 103 | mulassd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ 𝑘 ) )  ·  𝐾 )  =  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( ( 𝐾 ↑ 𝑘 )  ·  𝐾 ) ) ) | 
						
							| 108 |  | expp1 | ⊢ ( ( 𝐾  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐾 ↑ ( 𝑘  +  1 ) )  =  ( ( 𝐾 ↑ 𝑘 )  ·  𝐾 ) ) | 
						
							| 109 | 49 94 108 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐾 ↑ ( 𝑘  +  1 ) )  =  ( ( 𝐾 ↑ 𝑘 )  ·  𝐾 ) ) | 
						
							| 110 | 109 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ ( 𝑘  +  1 ) ) )  =  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( ( 𝐾 ↑ 𝑘 )  ·  𝐾 ) ) ) | 
						
							| 111 | 107 110 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ 𝑘 ) )  ·  𝐾 )  =  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ ( 𝑘  +  1 ) ) ) ) | 
						
							| 112 | 104 111 | breq12d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘  +  1 ) ) )  ·  𝐾 )  ≤  ( ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ 𝑘 ) )  ·  𝐾 )  ↔  ( 𝐾  ·  ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) )  ≤  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 113 | 101 112 | bitrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘  +  1 ) ) )  ≤  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ 𝑘 ) )  ↔  ( 𝐾  ·  ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) )  ≤  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 114 | 12 9 13 8 5 | algrp1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐺 ‘ ( 𝑘  +  1 ) )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 115 | 12 9 13 8 5 | algrp1 | ⊢ ( ( 𝜑  ∧  ( 𝑘  +  1 )  ∈  ℕ )  →  ( 𝐺 ‘ ( ( 𝑘  +  1 )  +  1 ) )  =  ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 116 | 58 115 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐺 ‘ ( ( 𝑘  +  1 )  +  1 ) )  =  ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 117 | 114 116 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐺 ‘ ( 𝑘  +  1 ) ) 𝐷 ( 𝐺 ‘ ( ( 𝑘  +  1 )  +  1 ) ) )  =  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) 𝐷 ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 118 | 117 | breq1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝐺 ‘ ( 𝑘  +  1 ) ) 𝐷 ( 𝐺 ‘ ( ( 𝑘  +  1 )  +  1 ) ) )  ≤  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ ( 𝑘  +  1 ) ) )  ↔  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) 𝐷 ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) )  ≤  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 119 | 93 113 118 | 3imtr4d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘  +  1 ) ) )  ≤  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ 𝑘 ) )  →  ( ( 𝐺 ‘ ( 𝑘  +  1 ) ) 𝐷 ( 𝐺 ‘ ( ( 𝑘  +  1 )  +  1 ) ) )  ≤  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 120 | 119 | expcom | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝜑  →  ( ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘  +  1 ) ) )  ≤  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ 𝑘 ) )  →  ( ( 𝐺 ‘ ( 𝑘  +  1 ) ) 𝐷 ( 𝐺 ‘ ( ( 𝑘  +  1 )  +  1 ) ) )  ≤  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 121 | 120 | a2d | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝜑  →  ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘  +  1 ) ) )  ≤  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ 𝑘 ) ) )  →  ( 𝜑  →  ( ( 𝐺 ‘ ( 𝑘  +  1 ) ) 𝐷 ( 𝐺 ‘ ( ( 𝑘  +  1 )  +  1 ) ) )  ≤  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 122 | 25 32 39 32 56 121 | nnind | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝜑  →  ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘  +  1 ) ) )  ≤  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ 𝑘 ) ) ) ) | 
						
							| 123 | 122 | impcom | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘  +  1 ) ) )  ≤  ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) )  /  𝐾 )  ·  ( 𝐾 ↑ 𝑘 ) ) ) | 
						
							| 124 | 11 14 18 3 4 123 | geomcau | ⊢ ( 𝜑  →  𝐺  ∈  ( Cau ‘ 𝐷 ) ) | 
						
							| 125 | 7 | cmetcau | ⊢ ( ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ∧  𝐺  ∈  ( Cau ‘ 𝐷 ) )  →  𝐺  ∈  dom  ( ⇝𝑡 ‘ 𝐽 ) ) | 
						
							| 126 | 1 124 125 | syl2anc | ⊢ ( 𝜑  →  𝐺  ∈  dom  ( ⇝𝑡 ‘ 𝐽 ) ) | 
						
							| 127 |  | metxmet | ⊢ ( 𝐷  ∈  ( Met ‘ 𝑋 )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 128 | 7 | methaus | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝐽  ∈  Haus ) | 
						
							| 129 | 11 127 128 | 3syl | ⊢ ( 𝜑  →  𝐽  ∈  Haus ) | 
						
							| 130 |  | lmfun | ⊢ ( 𝐽  ∈  Haus  →  Fun  ( ⇝𝑡 ‘ 𝐽 ) ) | 
						
							| 131 |  | funfvbrb | ⊢ ( Fun  ( ⇝𝑡 ‘ 𝐽 )  →  ( 𝐺  ∈  dom  ( ⇝𝑡 ‘ 𝐽 )  ↔  𝐺 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) | 
						
							| 132 | 129 130 131 | 3syl | ⊢ ( 𝜑  →  ( 𝐺  ∈  dom  ( ⇝𝑡 ‘ 𝐽 )  ↔  𝐺 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) | 
						
							| 133 | 126 132 | mpbid | ⊢ ( 𝜑  →  𝐺 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) |