Step |
Hyp |
Ref |
Expression |
1 |
|
bfp.2 |
⊢ ( 𝜑 → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
2 |
|
bfp.3 |
⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
3 |
|
bfp.4 |
⊢ ( 𝜑 → 𝐾 ∈ ℝ+ ) |
4 |
|
bfp.5 |
⊢ ( 𝜑 → 𝐾 < 1 ) |
5 |
|
bfp.6 |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑋 ) |
6 |
|
bfp.7 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐾 · ( 𝑥 𝐷 𝑦 ) ) ) |
7 |
|
bfp.8 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
8 |
|
bfp.9 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
9 |
|
bfp.10 |
⊢ 𝐺 = seq 1 ( ( 𝐹 ∘ 1st ) , ( ℕ × { 𝐴 } ) ) |
10 |
|
cmetmet |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
11 |
1 10
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
12 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
13 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
14 |
12 9 13 8 5
|
algrf |
⊢ ( 𝜑 → 𝐺 : ℕ ⟶ 𝑋 ) |
15 |
5 8
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ 𝑋 ) |
16 |
|
metcl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑋 ) → ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) ∈ ℝ ) |
17 |
11 8 15 16
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) ∈ ℝ ) |
18 |
17 3
|
rerpdivcld |
⊢ ( 𝜑 → ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) ∈ ℝ ) |
19 |
|
fveq2 |
⊢ ( 𝑗 = 1 → ( 𝐺 ‘ 𝑗 ) = ( 𝐺 ‘ 1 ) ) |
20 |
|
fvoveq1 |
⊢ ( 𝑗 = 1 → ( 𝐺 ‘ ( 𝑗 + 1 ) ) = ( 𝐺 ‘ ( 1 + 1 ) ) ) |
21 |
19 20
|
oveq12d |
⊢ ( 𝑗 = 1 → ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) = ( ( 𝐺 ‘ 1 ) 𝐷 ( 𝐺 ‘ ( 1 + 1 ) ) ) ) |
22 |
|
oveq2 |
⊢ ( 𝑗 = 1 → ( 𝐾 ↑ 𝑗 ) = ( 𝐾 ↑ 1 ) ) |
23 |
22
|
oveq2d |
⊢ ( 𝑗 = 1 → ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ 𝑗 ) ) = ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ 1 ) ) ) |
24 |
21 23
|
breq12d |
⊢ ( 𝑗 = 1 → ( ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ≤ ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ 𝑗 ) ) ↔ ( ( 𝐺 ‘ 1 ) 𝐷 ( 𝐺 ‘ ( 1 + 1 ) ) ) ≤ ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ 1 ) ) ) ) |
25 |
24
|
imbi2d |
⊢ ( 𝑗 = 1 → ( ( 𝜑 → ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ≤ ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ 𝑗 ) ) ) ↔ ( 𝜑 → ( ( 𝐺 ‘ 1 ) 𝐷 ( 𝐺 ‘ ( 1 + 1 ) ) ) ≤ ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ 1 ) ) ) ) ) |
26 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝐺 ‘ 𝑗 ) = ( 𝐺 ‘ 𝑘 ) ) |
27 |
|
fvoveq1 |
⊢ ( 𝑗 = 𝑘 → ( 𝐺 ‘ ( 𝑗 + 1 ) ) = ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) |
28 |
26 27
|
oveq12d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) = ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) |
29 |
|
oveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝐾 ↑ 𝑗 ) = ( 𝐾 ↑ 𝑘 ) ) |
30 |
29
|
oveq2d |
⊢ ( 𝑗 = 𝑘 → ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ 𝑗 ) ) = ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ 𝑘 ) ) ) |
31 |
28 30
|
breq12d |
⊢ ( 𝑗 = 𝑘 → ( ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ≤ ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ 𝑗 ) ) ↔ ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ≤ ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ 𝑘 ) ) ) ) |
32 |
31
|
imbi2d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝜑 → ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ≤ ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ 𝑗 ) ) ) ↔ ( 𝜑 → ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ≤ ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ 𝑘 ) ) ) ) ) |
33 |
|
fveq2 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝐺 ‘ 𝑗 ) = ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) |
34 |
|
fvoveq1 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝐺 ‘ ( 𝑗 + 1 ) ) = ( 𝐺 ‘ ( ( 𝑘 + 1 ) + 1 ) ) ) |
35 |
33 34
|
oveq12d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) = ( ( 𝐺 ‘ ( 𝑘 + 1 ) ) 𝐷 ( 𝐺 ‘ ( ( 𝑘 + 1 ) + 1 ) ) ) ) |
36 |
|
oveq2 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝐾 ↑ 𝑗 ) = ( 𝐾 ↑ ( 𝑘 + 1 ) ) ) |
37 |
36
|
oveq2d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ 𝑗 ) ) = ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ ( 𝑘 + 1 ) ) ) ) |
38 |
35 37
|
breq12d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ≤ ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ 𝑗 ) ) ↔ ( ( 𝐺 ‘ ( 𝑘 + 1 ) ) 𝐷 ( 𝐺 ‘ ( ( 𝑘 + 1 ) + 1 ) ) ) ≤ ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ ( 𝑘 + 1 ) ) ) ) ) |
39 |
38
|
imbi2d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝜑 → ( ( 𝐺 ‘ 𝑗 ) 𝐷 ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ≤ ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ 𝑗 ) ) ) ↔ ( 𝜑 → ( ( 𝐺 ‘ ( 𝑘 + 1 ) ) 𝐷 ( 𝐺 ‘ ( ( 𝑘 + 1 ) + 1 ) ) ) ≤ ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
40 |
17
|
leidd |
⊢ ( 𝜑 → ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) ≤ ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) ) |
41 |
12 9 13 8
|
algr0 |
⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) = 𝐴 ) |
42 |
|
1nn |
⊢ 1 ∈ ℕ |
43 |
12 9 13 8 5
|
algrp1 |
⊢ ( ( 𝜑 ∧ 1 ∈ ℕ ) → ( 𝐺 ‘ ( 1 + 1 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) ) |
44 |
42 43
|
mpan2 |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 1 + 1 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) ) |
45 |
41
|
fveq2d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) = ( 𝐹 ‘ 𝐴 ) ) |
46 |
44 45
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 1 + 1 ) ) = ( 𝐹 ‘ 𝐴 ) ) |
47 |
41 46
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 1 ) 𝐷 ( 𝐺 ‘ ( 1 + 1 ) ) ) = ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) ) |
48 |
3
|
rpred |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
49 |
48
|
recnd |
⊢ ( 𝜑 → 𝐾 ∈ ℂ ) |
50 |
49
|
exp1d |
⊢ ( 𝜑 → ( 𝐾 ↑ 1 ) = 𝐾 ) |
51 |
50
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ 1 ) ) = ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · 𝐾 ) ) |
52 |
17
|
recnd |
⊢ ( 𝜑 → ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) ∈ ℂ ) |
53 |
3
|
rpne0d |
⊢ ( 𝜑 → 𝐾 ≠ 0 ) |
54 |
52 49 53
|
divcan1d |
⊢ ( 𝜑 → ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · 𝐾 ) = ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) ) |
55 |
51 54
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ 1 ) ) = ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) ) |
56 |
40 47 55
|
3brtr4d |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 1 ) 𝐷 ( 𝐺 ‘ ( 1 + 1 ) ) ) ≤ ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ 1 ) ) ) |
57 |
14
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ) |
58 |
|
peano2nn |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) |
59 |
|
ffvelrn |
⊢ ( ( 𝐺 : ℕ ⟶ 𝑋 ∧ ( 𝑘 + 1 ) ∈ ℕ ) → ( 𝐺 ‘ ( 𝑘 + 1 ) ) ∈ 𝑋 ) |
60 |
14 58 59
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ ( 𝑘 + 1 ) ) ∈ 𝑋 ) |
61 |
57 60
|
jca |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ∈ 𝑋 ) ) |
62 |
6
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐾 · ( 𝑥 𝐷 𝑦 ) ) ) |
63 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐾 · ( 𝑥 𝐷 𝑦 ) ) ) |
64 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑘 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
65 |
64
|
oveq1d |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) ) |
66 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑘 ) → ( 𝑥 𝐷 𝑦 ) = ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) ) |
67 |
66
|
oveq2d |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑘 ) → ( 𝐾 · ( 𝑥 𝐷 𝑦 ) ) = ( 𝐾 · ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) ) ) |
68 |
65 67
|
breq12d |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑘 ) → ( ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐾 · ( 𝑥 𝐷 𝑦 ) ) ↔ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐾 · ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) ) ) ) |
69 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐺 ‘ ( 𝑘 + 1 ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) |
70 |
69
|
oveq2d |
⊢ ( 𝑦 = ( 𝐺 ‘ ( 𝑘 + 1 ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) 𝐷 ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) ) |
71 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝐺 ‘ ( 𝑘 + 1 ) ) → ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) = ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) |
72 |
71
|
oveq2d |
⊢ ( 𝑦 = ( 𝐺 ‘ ( 𝑘 + 1 ) ) → ( 𝐾 · ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) ) = ( 𝐾 · ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) ) |
73 |
70 72
|
breq12d |
⊢ ( 𝑦 = ( 𝐺 ‘ ( 𝑘 + 1 ) ) → ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐾 · ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) ) ↔ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) 𝐷 ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) ≤ ( 𝐾 · ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
74 |
68 73
|
rspc2v |
⊢ ( ( ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐾 · ( 𝑥 𝐷 𝑦 ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) 𝐷 ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) ≤ ( 𝐾 · ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
75 |
61 63 74
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) 𝐷 ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) ≤ ( 𝐾 · ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) ) |
76 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
77 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐹 : 𝑋 ⟶ 𝑋 ) |
78 |
77 57
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ 𝑋 ) |
79 |
77 60
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ∈ 𝑋 ) |
80 |
|
metcl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ 𝑋 ∧ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ∈ 𝑋 ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) 𝐷 ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) ∈ ℝ ) |
81 |
76 78 79 80
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) 𝐷 ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) ∈ ℝ ) |
82 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐾 ∈ ℝ ) |
83 |
|
metcl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ∈ 𝑋 ) → ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ∈ ℝ ) |
84 |
76 57 60 83
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ∈ ℝ ) |
85 |
82 84
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐾 · ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) ∈ ℝ ) |
86 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) ∈ ℝ ) |
87 |
58
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ℕ ) |
88 |
87
|
nnnn0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ℕ0 ) |
89 |
82 88
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐾 ↑ ( 𝑘 + 1 ) ) ∈ ℝ ) |
90 |
86 89
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ ( 𝑘 + 1 ) ) ) ∈ ℝ ) |
91 |
|
letr |
⊢ ( ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) 𝐷 ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) ∈ ℝ ∧ ( 𝐾 · ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) ∈ ℝ ∧ ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ ( 𝑘 + 1 ) ) ) ∈ ℝ ) → ( ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) 𝐷 ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) ≤ ( 𝐾 · ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) ∧ ( 𝐾 · ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) ≤ ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ ( 𝑘 + 1 ) ) ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) 𝐷 ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) ≤ ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ ( 𝑘 + 1 ) ) ) ) ) |
92 |
81 85 90 91
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) 𝐷 ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) ≤ ( 𝐾 · ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) ∧ ( 𝐾 · ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) ≤ ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ ( 𝑘 + 1 ) ) ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) 𝐷 ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) ≤ ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ ( 𝑘 + 1 ) ) ) ) ) |
93 |
75 92
|
mpand |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐾 · ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) ≤ ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ ( 𝑘 + 1 ) ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) 𝐷 ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) ≤ ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ ( 𝑘 + 1 ) ) ) ) ) |
94 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
95 |
|
reexpcl |
⊢ ( ( 𝐾 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐾 ↑ 𝑘 ) ∈ ℝ ) |
96 |
48 94 95
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐾 ↑ 𝑘 ) ∈ ℝ ) |
97 |
86 96
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ 𝑘 ) ) ∈ ℝ ) |
98 |
3
|
rpgt0d |
⊢ ( 𝜑 → 0 < 𝐾 ) |
99 |
98
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 0 < 𝐾 ) |
100 |
|
lemul1 |
⊢ ( ( ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ∈ ℝ ∧ ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ 𝑘 ) ) ∈ ℝ ∧ ( 𝐾 ∈ ℝ ∧ 0 < 𝐾 ) ) → ( ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ≤ ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ 𝑘 ) ) ↔ ( ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) · 𝐾 ) ≤ ( ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ 𝑘 ) ) · 𝐾 ) ) ) |
101 |
84 97 82 99 100
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ≤ ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ 𝑘 ) ) ↔ ( ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) · 𝐾 ) ≤ ( ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ 𝑘 ) ) · 𝐾 ) ) ) |
102 |
84
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ∈ ℂ ) |
103 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐾 ∈ ℂ ) |
104 |
102 103
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) · 𝐾 ) = ( 𝐾 · ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) ) |
105 |
86
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) ∈ ℂ ) |
106 |
96
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐾 ↑ 𝑘 ) ∈ ℂ ) |
107 |
105 106 103
|
mulassd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ 𝑘 ) ) · 𝐾 ) = ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( ( 𝐾 ↑ 𝑘 ) · 𝐾 ) ) ) |
108 |
|
expp1 |
⊢ ( ( 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐾 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐾 ↑ 𝑘 ) · 𝐾 ) ) |
109 |
49 94 108
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐾 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐾 ↑ 𝑘 ) · 𝐾 ) ) |
110 |
109
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ ( 𝑘 + 1 ) ) ) = ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( ( 𝐾 ↑ 𝑘 ) · 𝐾 ) ) ) |
111 |
107 110
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ 𝑘 ) ) · 𝐾 ) = ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ ( 𝑘 + 1 ) ) ) ) |
112 |
104 111
|
breq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) · 𝐾 ) ≤ ( ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ 𝑘 ) ) · 𝐾 ) ↔ ( 𝐾 · ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) ≤ ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ ( 𝑘 + 1 ) ) ) ) ) |
113 |
101 112
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ≤ ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ 𝑘 ) ) ↔ ( 𝐾 · ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) ≤ ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ ( 𝑘 + 1 ) ) ) ) ) |
114 |
12 9 13 8 5
|
algrp1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ ( 𝑘 + 1 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
115 |
12 9 13 8 5
|
algrp1 |
⊢ ( ( 𝜑 ∧ ( 𝑘 + 1 ) ∈ ℕ ) → ( 𝐺 ‘ ( ( 𝑘 + 1 ) + 1 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) |
116 |
58 115
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ ( ( 𝑘 + 1 ) + 1 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) |
117 |
114 116
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐺 ‘ ( 𝑘 + 1 ) ) 𝐷 ( 𝐺 ‘ ( ( 𝑘 + 1 ) + 1 ) ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) 𝐷 ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) ) |
118 |
117
|
breq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐺 ‘ ( 𝑘 + 1 ) ) 𝐷 ( 𝐺 ‘ ( ( 𝑘 + 1 ) + 1 ) ) ) ≤ ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ ( 𝑘 + 1 ) ) ) ↔ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) 𝐷 ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) ≤ ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ ( 𝑘 + 1 ) ) ) ) ) |
119 |
93 113 118
|
3imtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ≤ ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ 𝑘 ) ) → ( ( 𝐺 ‘ ( 𝑘 + 1 ) ) 𝐷 ( 𝐺 ‘ ( ( 𝑘 + 1 ) + 1 ) ) ) ≤ ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ ( 𝑘 + 1 ) ) ) ) ) |
120 |
119
|
expcom |
⊢ ( 𝑘 ∈ ℕ → ( 𝜑 → ( ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ≤ ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ 𝑘 ) ) → ( ( 𝐺 ‘ ( 𝑘 + 1 ) ) 𝐷 ( 𝐺 ‘ ( ( 𝑘 + 1 ) + 1 ) ) ) ≤ ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
121 |
120
|
a2d |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝜑 → ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ≤ ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ 𝑘 ) ) ) → ( 𝜑 → ( ( 𝐺 ‘ ( 𝑘 + 1 ) ) 𝐷 ( 𝐺 ‘ ( ( 𝑘 + 1 ) + 1 ) ) ) ≤ ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
122 |
25 32 39 32 56 121
|
nnind |
⊢ ( 𝑘 ∈ ℕ → ( 𝜑 → ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ≤ ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ 𝑘 ) ) ) ) |
123 |
122
|
impcom |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐺 ‘ 𝑘 ) 𝐷 ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ≤ ( ( ( 𝐴 𝐷 ( 𝐹 ‘ 𝐴 ) ) / 𝐾 ) · ( 𝐾 ↑ 𝑘 ) ) ) |
124 |
11 14 18 3 4 123
|
geomcau |
⊢ ( 𝜑 → 𝐺 ∈ ( Cau ‘ 𝐷 ) ) |
125 |
7
|
cmetcau |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐺 ∈ ( Cau ‘ 𝐷 ) ) → 𝐺 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
126 |
1 124 125
|
syl2anc |
⊢ ( 𝜑 → 𝐺 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
127 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
128 |
7
|
methaus |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Haus ) |
129 |
11 127 128
|
3syl |
⊢ ( 𝜑 → 𝐽 ∈ Haus ) |
130 |
|
lmfun |
⊢ ( 𝐽 ∈ Haus → Fun ( ⇝𝑡 ‘ 𝐽 ) ) |
131 |
|
funfvbrb |
⊢ ( Fun ( ⇝𝑡 ‘ 𝐽 ) → ( 𝐺 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ↔ 𝐺 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) |
132 |
129 130 131
|
3syl |
⊢ ( 𝜑 → ( 𝐺 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ↔ 𝐺 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) ) |
133 |
126 132
|
mpbid |
⊢ ( 𝜑 → 𝐺 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝐺 ) ) |