| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bfp.2 | ⊢ ( 𝜑  →  𝐷  ∈  ( CMet ‘ 𝑋 ) ) | 
						
							| 2 |  | bfp.3 | ⊢ ( 𝜑  →  𝑋  ≠  ∅ ) | 
						
							| 3 |  | bfp.4 | ⊢ ( 𝜑  →  𝐾  ∈  ℝ+ ) | 
						
							| 4 |  | bfp.5 | ⊢ ( 𝜑  →  𝐾  <  1 ) | 
						
							| 5 |  | bfp.6 | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ 𝑋 ) | 
						
							| 6 |  | bfp.7 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) )  ≤  ( 𝐾  ·  ( 𝑥 𝐷 𝑦 ) ) ) | 
						
							| 7 |  | n0 | ⊢ ( 𝑋  ≠  ∅  ↔  ∃ 𝑤 𝑤  ∈  𝑋 ) | 
						
							| 8 | 2 7 | sylib | ⊢ ( 𝜑  →  ∃ 𝑤 𝑤  ∈  𝑋 ) | 
						
							| 9 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑋 )  →  𝐷  ∈  ( CMet ‘ 𝑋 ) ) | 
						
							| 10 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑋 )  →  𝑋  ≠  ∅ ) | 
						
							| 11 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑋 )  →  𝐾  ∈  ℝ+ ) | 
						
							| 12 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑋 )  →  𝐾  <  1 ) | 
						
							| 13 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑋 )  →  𝐹 : 𝑋 ⟶ 𝑋 ) | 
						
							| 14 | 6 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) )  ≤  ( 𝐾  ·  ( 𝑥 𝐷 𝑦 ) ) ) | 
						
							| 15 |  | eqid | ⊢ ( MetOpen ‘ 𝐷 )  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 16 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑋 )  →  𝑤  ∈  𝑋 ) | 
						
							| 17 |  | eqid | ⊢ seq 1 ( ( 𝐹  ∘  1st  ) ,  ( ℕ  ×  { 𝑤 } ) )  =  seq 1 ( ( 𝐹  ∘  1st  ) ,  ( ℕ  ×  { 𝑤 } ) ) | 
						
							| 18 | 9 10 11 12 13 14 15 16 17 | bfplem2 | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑋 )  →  ∃ 𝑧  ∈  𝑋 ( 𝐹 ‘ 𝑧 )  =  𝑧 ) | 
						
							| 19 | 8 18 | exlimddv | ⊢ ( 𝜑  →  ∃ 𝑧  ∈  𝑋 ( 𝐹 ‘ 𝑧 )  =  𝑧 ) | 
						
							| 20 |  | oveq12 | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 )  →  ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) )  =  ( 𝑥 𝐷 𝑦 ) ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) )  →  ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) )  =  ( 𝑥 𝐷 𝑦 ) ) | 
						
							| 22 | 6 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) )  →  ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) )  ≤  ( 𝐾  ·  ( 𝑥 𝐷 𝑦 ) ) ) | 
						
							| 23 | 21 22 | eqbrtrrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) )  →  ( 𝑥 𝐷 𝑦 )  ≤  ( 𝐾  ·  ( 𝑥 𝐷 𝑦 ) ) ) | 
						
							| 24 |  | cmetmet | ⊢ ( 𝐷  ∈  ( CMet ‘ 𝑋 )  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 25 | 1 24 | syl | ⊢ ( 𝜑  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 26 | 25 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) )  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 27 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) )  →  𝑥  ∈  𝑋 ) | 
						
							| 28 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) )  →  𝑦  ∈  𝑋 ) | 
						
							| 29 |  | metcl | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( 𝑥 𝐷 𝑦 )  ∈  ℝ ) | 
						
							| 30 | 26 27 28 29 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) )  →  ( 𝑥 𝐷 𝑦 )  ∈  ℝ ) | 
						
							| 31 | 3 | rpred | ⊢ ( 𝜑  →  𝐾  ∈  ℝ ) | 
						
							| 32 | 31 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) )  →  𝐾  ∈  ℝ ) | 
						
							| 33 | 32 30 | remulcld | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) )  →  ( 𝐾  ·  ( 𝑥 𝐷 𝑦 ) )  ∈  ℝ ) | 
						
							| 34 | 30 33 | suble0d | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) )  →  ( ( ( 𝑥 𝐷 𝑦 )  −  ( 𝐾  ·  ( 𝑥 𝐷 𝑦 ) ) )  ≤  0  ↔  ( 𝑥 𝐷 𝑦 )  ≤  ( 𝐾  ·  ( 𝑥 𝐷 𝑦 ) ) ) ) | 
						
							| 35 | 23 34 | mpbird | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) )  →  ( ( 𝑥 𝐷 𝑦 )  −  ( 𝐾  ·  ( 𝑥 𝐷 𝑦 ) ) )  ≤  0 ) | 
						
							| 36 |  | 1cnd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) )  →  1  ∈  ℂ ) | 
						
							| 37 | 32 | recnd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) )  →  𝐾  ∈  ℂ ) | 
						
							| 38 | 30 | recnd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) )  →  ( 𝑥 𝐷 𝑦 )  ∈  ℂ ) | 
						
							| 39 | 36 37 38 | subdird | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) )  →  ( ( 1  −  𝐾 )  ·  ( 𝑥 𝐷 𝑦 ) )  =  ( ( 1  ·  ( 𝑥 𝐷 𝑦 ) )  −  ( 𝐾  ·  ( 𝑥 𝐷 𝑦 ) ) ) ) | 
						
							| 40 | 38 | mullidd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) )  →  ( 1  ·  ( 𝑥 𝐷 𝑦 ) )  =  ( 𝑥 𝐷 𝑦 ) ) | 
						
							| 41 | 40 | oveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) )  →  ( ( 1  ·  ( 𝑥 𝐷 𝑦 ) )  −  ( 𝐾  ·  ( 𝑥 𝐷 𝑦 ) ) )  =  ( ( 𝑥 𝐷 𝑦 )  −  ( 𝐾  ·  ( 𝑥 𝐷 𝑦 ) ) ) ) | 
						
							| 42 | 39 41 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) )  →  ( ( 1  −  𝐾 )  ·  ( 𝑥 𝐷 𝑦 ) )  =  ( ( 𝑥 𝐷 𝑦 )  −  ( 𝐾  ·  ( 𝑥 𝐷 𝑦 ) ) ) ) | 
						
							| 43 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 44 |  | resubcl | ⊢ ( ( 1  ∈  ℝ  ∧  𝐾  ∈  ℝ )  →  ( 1  −  𝐾 )  ∈  ℝ ) | 
						
							| 45 | 43 31 44 | sylancr | ⊢ ( 𝜑  →  ( 1  −  𝐾 )  ∈  ℝ ) | 
						
							| 46 | 45 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) )  →  ( 1  −  𝐾 )  ∈  ℝ ) | 
						
							| 47 | 46 | recnd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) )  →  ( 1  −  𝐾 )  ∈  ℂ ) | 
						
							| 48 | 47 | mul01d | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) )  →  ( ( 1  −  𝐾 )  ·  0 )  =  0 ) | 
						
							| 49 | 35 42 48 | 3brtr4d | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) )  →  ( ( 1  −  𝐾 )  ·  ( 𝑥 𝐷 𝑦 ) )  ≤  ( ( 1  −  𝐾 )  ·  0 ) ) | 
						
							| 50 |  | 0red | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) )  →  0  ∈  ℝ ) | 
						
							| 51 |  | posdif | ⊢ ( ( 𝐾  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( 𝐾  <  1  ↔  0  <  ( 1  −  𝐾 ) ) ) | 
						
							| 52 | 31 43 51 | sylancl | ⊢ ( 𝜑  →  ( 𝐾  <  1  ↔  0  <  ( 1  −  𝐾 ) ) ) | 
						
							| 53 | 4 52 | mpbid | ⊢ ( 𝜑  →  0  <  ( 1  −  𝐾 ) ) | 
						
							| 54 | 53 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) )  →  0  <  ( 1  −  𝐾 ) ) | 
						
							| 55 |  | lemul2 | ⊢ ( ( ( 𝑥 𝐷 𝑦 )  ∈  ℝ  ∧  0  ∈  ℝ  ∧  ( ( 1  −  𝐾 )  ∈  ℝ  ∧  0  <  ( 1  −  𝐾 ) ) )  →  ( ( 𝑥 𝐷 𝑦 )  ≤  0  ↔  ( ( 1  −  𝐾 )  ·  ( 𝑥 𝐷 𝑦 ) )  ≤  ( ( 1  −  𝐾 )  ·  0 ) ) ) | 
						
							| 56 | 30 50 46 54 55 | syl112anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) )  →  ( ( 𝑥 𝐷 𝑦 )  ≤  0  ↔  ( ( 1  −  𝐾 )  ·  ( 𝑥 𝐷 𝑦 ) )  ≤  ( ( 1  −  𝐾 )  ·  0 ) ) ) | 
						
							| 57 | 49 56 | mpbird | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) )  →  ( 𝑥 𝐷 𝑦 )  ≤  0 ) | 
						
							| 58 |  | metge0 | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  0  ≤  ( 𝑥 𝐷 𝑦 ) ) | 
						
							| 59 | 26 27 28 58 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) )  →  0  ≤  ( 𝑥 𝐷 𝑦 ) ) | 
						
							| 60 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 61 |  | letri3 | ⊢ ( ( ( 𝑥 𝐷 𝑦 )  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( ( 𝑥 𝐷 𝑦 )  =  0  ↔  ( ( 𝑥 𝐷 𝑦 )  ≤  0  ∧  0  ≤  ( 𝑥 𝐷 𝑦 ) ) ) ) | 
						
							| 62 | 30 60 61 | sylancl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) )  →  ( ( 𝑥 𝐷 𝑦 )  =  0  ↔  ( ( 𝑥 𝐷 𝑦 )  ≤  0  ∧  0  ≤  ( 𝑥 𝐷 𝑦 ) ) ) ) | 
						
							| 63 | 57 59 62 | mpbir2and | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) )  →  ( 𝑥 𝐷 𝑦 )  =  0 ) | 
						
							| 64 |  | meteq0 | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( ( 𝑥 𝐷 𝑦 )  =  0  ↔  𝑥  =  𝑦 ) ) | 
						
							| 65 | 26 27 28 64 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) )  →  ( ( 𝑥 𝐷 𝑦 )  =  0  ↔  𝑥  =  𝑦 ) ) | 
						
							| 66 | 63 65 | mpbid | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) )  →  𝑥  =  𝑦 ) | 
						
							| 67 | 66 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 68 | 67 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 69 |  | fveq2 | ⊢ ( 𝑥  =  𝑧  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 70 |  | id | ⊢ ( 𝑥  =  𝑧  →  𝑥  =  𝑧 ) | 
						
							| 71 | 69 70 | eqeq12d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ↔  ( 𝐹 ‘ 𝑧 )  =  𝑧 ) ) | 
						
							| 72 | 71 | anbi1d | ⊢ ( 𝑥  =  𝑧  →  ( ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 )  ↔  ( ( 𝐹 ‘ 𝑧 )  =  𝑧  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) ) ) | 
						
							| 73 |  | equequ1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  =  𝑦  ↔  𝑧  =  𝑦 ) ) | 
						
							| 74 | 72 73 | imbi12d | ⊢ ( 𝑥  =  𝑧  →  ( ( ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 )  →  𝑥  =  𝑦 )  ↔  ( ( ( 𝐹 ‘ 𝑧 )  =  𝑧  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 )  →  𝑧  =  𝑦 ) ) ) | 
						
							| 75 | 74 | ralbidv | ⊢ ( 𝑥  =  𝑧  →  ( ∀ 𝑦  ∈  𝑋 ( ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 )  →  𝑥  =  𝑦 )  ↔  ∀ 𝑦  ∈  𝑋 ( ( ( 𝐹 ‘ 𝑧 )  =  𝑧  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 )  →  𝑧  =  𝑦 ) ) ) | 
						
							| 76 | 75 | cbvralvw | ⊢ ( ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( ( 𝐹 ‘ 𝑥 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 )  →  𝑥  =  𝑦 )  ↔  ∀ 𝑧  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( ( 𝐹 ‘ 𝑧 )  =  𝑧  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 )  →  𝑧  =  𝑦 ) ) | 
						
							| 77 | 68 76 | sylib | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( ( 𝐹 ‘ 𝑧 )  =  𝑧  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 )  →  𝑧  =  𝑦 ) ) | 
						
							| 78 |  | fveq2 | ⊢ ( 𝑧  =  𝑦  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 79 |  | id | ⊢ ( 𝑧  =  𝑦  →  𝑧  =  𝑦 ) | 
						
							| 80 | 78 79 | eqeq12d | ⊢ ( 𝑧  =  𝑦  →  ( ( 𝐹 ‘ 𝑧 )  =  𝑧  ↔  ( 𝐹 ‘ 𝑦 )  =  𝑦 ) ) | 
						
							| 81 | 80 | reu4 | ⊢ ( ∃! 𝑧  ∈  𝑋 ( 𝐹 ‘ 𝑧 )  =  𝑧  ↔  ( ∃ 𝑧  ∈  𝑋 ( 𝐹 ‘ 𝑧 )  =  𝑧  ∧  ∀ 𝑧  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( ( 𝐹 ‘ 𝑧 )  =  𝑧  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑦 )  →  𝑧  =  𝑦 ) ) ) | 
						
							| 82 | 19 77 81 | sylanbrc | ⊢ ( 𝜑  →  ∃! 𝑧  ∈  𝑋 ( 𝐹 ‘ 𝑧 )  =  𝑧 ) |