Step |
Hyp |
Ref |
Expression |
1 |
|
bfp.2 |
⊢ ( 𝜑 → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
2 |
|
bfp.3 |
⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
3 |
|
bfp.4 |
⊢ ( 𝜑 → 𝐾 ∈ ℝ+ ) |
4 |
|
bfp.5 |
⊢ ( 𝜑 → 𝐾 < 1 ) |
5 |
|
bfp.6 |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑋 ) |
6 |
|
bfp.7 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐾 · ( 𝑥 𝐷 𝑦 ) ) ) |
7 |
|
n0 |
⊢ ( 𝑋 ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ 𝑋 ) |
8 |
2 7
|
sylib |
⊢ ( 𝜑 → ∃ 𝑤 𝑤 ∈ 𝑋 ) |
9 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑋 ) → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
10 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑋 ) → 𝑋 ≠ ∅ ) |
11 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑋 ) → 𝐾 ∈ ℝ+ ) |
12 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑋 ) → 𝐾 < 1 ) |
13 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑋 ) → 𝐹 : 𝑋 ⟶ 𝑋 ) |
14 |
6
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐾 · ( 𝑥 𝐷 𝑦 ) ) ) |
15 |
|
eqid |
⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) |
16 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑋 ) → 𝑤 ∈ 𝑋 ) |
17 |
|
eqid |
⊢ seq 1 ( ( 𝐹 ∘ 1st ) , ( ℕ × { 𝑤 } ) ) = seq 1 ( ( 𝐹 ∘ 1st ) , ( ℕ × { 𝑤 } ) ) |
18 |
9 10 11 12 13 14 15 16 17
|
bfplem2 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑋 ) → ∃ 𝑧 ∈ 𝑋 ( 𝐹 ‘ 𝑧 ) = 𝑧 ) |
19 |
8 18
|
exlimddv |
⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝑋 ( 𝐹 ‘ 𝑧 ) = 𝑧 ) |
20 |
|
oveq12 |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) = ( 𝑥 𝐷 𝑦 ) ) |
21 |
20
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) = ( 𝑥 𝐷 𝑦 ) ) |
22 |
6
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐾 · ( 𝑥 𝐷 𝑦 ) ) ) |
23 |
21 22
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( 𝑥 𝐷 𝑦 ) ≤ ( 𝐾 · ( 𝑥 𝐷 𝑦 ) ) ) |
24 |
|
cmetmet |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
25 |
1 24
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
26 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
27 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → 𝑥 ∈ 𝑋 ) |
28 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → 𝑦 ∈ 𝑋 ) |
29 |
|
metcl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑦 ) ∈ ℝ ) |
30 |
26 27 28 29
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( 𝑥 𝐷 𝑦 ) ∈ ℝ ) |
31 |
3
|
rpred |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
32 |
31
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → 𝐾 ∈ ℝ ) |
33 |
32 30
|
remulcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( 𝐾 · ( 𝑥 𝐷 𝑦 ) ) ∈ ℝ ) |
34 |
30 33
|
suble0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( ( ( 𝑥 𝐷 𝑦 ) − ( 𝐾 · ( 𝑥 𝐷 𝑦 ) ) ) ≤ 0 ↔ ( 𝑥 𝐷 𝑦 ) ≤ ( 𝐾 · ( 𝑥 𝐷 𝑦 ) ) ) ) |
35 |
23 34
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( ( 𝑥 𝐷 𝑦 ) − ( 𝐾 · ( 𝑥 𝐷 𝑦 ) ) ) ≤ 0 ) |
36 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → 1 ∈ ℂ ) |
37 |
32
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → 𝐾 ∈ ℂ ) |
38 |
30
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( 𝑥 𝐷 𝑦 ) ∈ ℂ ) |
39 |
36 37 38
|
subdird |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( ( 1 − 𝐾 ) · ( 𝑥 𝐷 𝑦 ) ) = ( ( 1 · ( 𝑥 𝐷 𝑦 ) ) − ( 𝐾 · ( 𝑥 𝐷 𝑦 ) ) ) ) |
40 |
38
|
mulid2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( 1 · ( 𝑥 𝐷 𝑦 ) ) = ( 𝑥 𝐷 𝑦 ) ) |
41 |
40
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( ( 1 · ( 𝑥 𝐷 𝑦 ) ) − ( 𝐾 · ( 𝑥 𝐷 𝑦 ) ) ) = ( ( 𝑥 𝐷 𝑦 ) − ( 𝐾 · ( 𝑥 𝐷 𝑦 ) ) ) ) |
42 |
39 41
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( ( 1 − 𝐾 ) · ( 𝑥 𝐷 𝑦 ) ) = ( ( 𝑥 𝐷 𝑦 ) − ( 𝐾 · ( 𝑥 𝐷 𝑦 ) ) ) ) |
43 |
|
1re |
⊢ 1 ∈ ℝ |
44 |
|
resubcl |
⊢ ( ( 1 ∈ ℝ ∧ 𝐾 ∈ ℝ ) → ( 1 − 𝐾 ) ∈ ℝ ) |
45 |
43 31 44
|
sylancr |
⊢ ( 𝜑 → ( 1 − 𝐾 ) ∈ ℝ ) |
46 |
45
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( 1 − 𝐾 ) ∈ ℝ ) |
47 |
46
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( 1 − 𝐾 ) ∈ ℂ ) |
48 |
47
|
mul01d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( ( 1 − 𝐾 ) · 0 ) = 0 ) |
49 |
35 42 48
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( ( 1 − 𝐾 ) · ( 𝑥 𝐷 𝑦 ) ) ≤ ( ( 1 − 𝐾 ) · 0 ) ) |
50 |
|
0red |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → 0 ∈ ℝ ) |
51 |
|
posdif |
⊢ ( ( 𝐾 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝐾 < 1 ↔ 0 < ( 1 − 𝐾 ) ) ) |
52 |
31 43 51
|
sylancl |
⊢ ( 𝜑 → ( 𝐾 < 1 ↔ 0 < ( 1 − 𝐾 ) ) ) |
53 |
4 52
|
mpbid |
⊢ ( 𝜑 → 0 < ( 1 − 𝐾 ) ) |
54 |
53
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → 0 < ( 1 − 𝐾 ) ) |
55 |
|
lemul2 |
⊢ ( ( ( 𝑥 𝐷 𝑦 ) ∈ ℝ ∧ 0 ∈ ℝ ∧ ( ( 1 − 𝐾 ) ∈ ℝ ∧ 0 < ( 1 − 𝐾 ) ) ) → ( ( 𝑥 𝐷 𝑦 ) ≤ 0 ↔ ( ( 1 − 𝐾 ) · ( 𝑥 𝐷 𝑦 ) ) ≤ ( ( 1 − 𝐾 ) · 0 ) ) ) |
56 |
30 50 46 54 55
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( ( 𝑥 𝐷 𝑦 ) ≤ 0 ↔ ( ( 1 − 𝐾 ) · ( 𝑥 𝐷 𝑦 ) ) ≤ ( ( 1 − 𝐾 ) · 0 ) ) ) |
57 |
49 56
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( 𝑥 𝐷 𝑦 ) ≤ 0 ) |
58 |
|
metge0 |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → 0 ≤ ( 𝑥 𝐷 𝑦 ) ) |
59 |
26 27 28 58
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → 0 ≤ ( 𝑥 𝐷 𝑦 ) ) |
60 |
|
0re |
⊢ 0 ∈ ℝ |
61 |
|
letri3 |
⊢ ( ( ( 𝑥 𝐷 𝑦 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ ( ( 𝑥 𝐷 𝑦 ) ≤ 0 ∧ 0 ≤ ( 𝑥 𝐷 𝑦 ) ) ) ) |
62 |
30 60 61
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ ( ( 𝑥 𝐷 𝑦 ) ≤ 0 ∧ 0 ≤ ( 𝑥 𝐷 𝑦 ) ) ) ) |
63 |
57 59 62
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( 𝑥 𝐷 𝑦 ) = 0 ) |
64 |
|
meteq0 |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ) |
65 |
26 27 28 64
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ) |
66 |
63 65
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → 𝑥 = 𝑦 ) |
67 |
66
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) → 𝑥 = 𝑦 ) ) |
68 |
67
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) → 𝑥 = 𝑦 ) ) |
69 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) |
70 |
|
id |
⊢ ( 𝑥 = 𝑧 → 𝑥 = 𝑧 ) |
71 |
69 70
|
eqeq12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ↔ ( 𝐹 ‘ 𝑧 ) = 𝑧 ) ) |
72 |
71
|
anbi1d |
⊢ ( 𝑥 = 𝑧 → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑧 ) = 𝑧 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) ) |
73 |
|
equequ1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝑦 ↔ 𝑧 = 𝑦 ) ) |
74 |
72 73
|
imbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ( ( 𝐹 ‘ 𝑧 ) = 𝑧 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) → 𝑧 = 𝑦 ) ) ) |
75 |
74
|
ralbidv |
⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ 𝑋 ( ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑋 ( ( ( 𝐹 ‘ 𝑧 ) = 𝑧 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) → 𝑧 = 𝑦 ) ) ) |
76 |
75
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝐹 ‘ 𝑧 ) = 𝑧 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) → 𝑧 = 𝑦 ) ) |
77 |
68 76
|
sylib |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝐹 ‘ 𝑧 ) = 𝑧 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) → 𝑧 = 𝑦 ) ) |
78 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑦 ) ) |
79 |
|
id |
⊢ ( 𝑧 = 𝑦 → 𝑧 = 𝑦 ) |
80 |
78 79
|
eqeq12d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝐹 ‘ 𝑧 ) = 𝑧 ↔ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) |
81 |
80
|
reu4 |
⊢ ( ∃! 𝑧 ∈ 𝑋 ( 𝐹 ‘ 𝑧 ) = 𝑧 ↔ ( ∃ 𝑧 ∈ 𝑋 ( 𝐹 ‘ 𝑧 ) = 𝑧 ∧ ∀ 𝑧 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝐹 ‘ 𝑧 ) = 𝑧 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) → 𝑧 = 𝑦 ) ) ) |
82 |
19 77 81
|
sylanbrc |
⊢ ( 𝜑 → ∃! 𝑧 ∈ 𝑋 ( 𝐹 ‘ 𝑧 ) = 𝑧 ) |