| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bfp.2 |
⊢ ( 𝜑 → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
| 2 |
|
bfp.3 |
⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
| 3 |
|
bfp.4 |
⊢ ( 𝜑 → 𝐾 ∈ ℝ+ ) |
| 4 |
|
bfp.5 |
⊢ ( 𝜑 → 𝐾 < 1 ) |
| 5 |
|
bfp.6 |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑋 ) |
| 6 |
|
bfp.7 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐾 · ( 𝑥 𝐷 𝑦 ) ) ) |
| 7 |
|
n0 |
⊢ ( 𝑋 ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ 𝑋 ) |
| 8 |
2 7
|
sylib |
⊢ ( 𝜑 → ∃ 𝑤 𝑤 ∈ 𝑋 ) |
| 9 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑋 ) → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
| 10 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑋 ) → 𝑋 ≠ ∅ ) |
| 11 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑋 ) → 𝐾 ∈ ℝ+ ) |
| 12 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑋 ) → 𝐾 < 1 ) |
| 13 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑋 ) → 𝐹 : 𝑋 ⟶ 𝑋 ) |
| 14 |
6
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐾 · ( 𝑥 𝐷 𝑦 ) ) ) |
| 15 |
|
eqid |
⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) |
| 16 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑋 ) → 𝑤 ∈ 𝑋 ) |
| 17 |
|
eqid |
⊢ seq 1 ( ( 𝐹 ∘ 1st ) , ( ℕ × { 𝑤 } ) ) = seq 1 ( ( 𝐹 ∘ 1st ) , ( ℕ × { 𝑤 } ) ) |
| 18 |
9 10 11 12 13 14 15 16 17
|
bfplem2 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑋 ) → ∃ 𝑧 ∈ 𝑋 ( 𝐹 ‘ 𝑧 ) = 𝑧 ) |
| 19 |
8 18
|
exlimddv |
⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝑋 ( 𝐹 ‘ 𝑧 ) = 𝑧 ) |
| 20 |
|
oveq12 |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) = ( 𝑥 𝐷 𝑦 ) ) |
| 21 |
20
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) = ( 𝑥 𝐷 𝑦 ) ) |
| 22 |
6
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐾 · ( 𝑥 𝐷 𝑦 ) ) ) |
| 23 |
21 22
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( 𝑥 𝐷 𝑦 ) ≤ ( 𝐾 · ( 𝑥 𝐷 𝑦 ) ) ) |
| 24 |
|
cmetmet |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 25 |
1 24
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 26 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 27 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → 𝑥 ∈ 𝑋 ) |
| 28 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → 𝑦 ∈ 𝑋 ) |
| 29 |
|
metcl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑦 ) ∈ ℝ ) |
| 30 |
26 27 28 29
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( 𝑥 𝐷 𝑦 ) ∈ ℝ ) |
| 31 |
3
|
rpred |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
| 32 |
31
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → 𝐾 ∈ ℝ ) |
| 33 |
32 30
|
remulcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( 𝐾 · ( 𝑥 𝐷 𝑦 ) ) ∈ ℝ ) |
| 34 |
30 33
|
suble0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( ( ( 𝑥 𝐷 𝑦 ) − ( 𝐾 · ( 𝑥 𝐷 𝑦 ) ) ) ≤ 0 ↔ ( 𝑥 𝐷 𝑦 ) ≤ ( 𝐾 · ( 𝑥 𝐷 𝑦 ) ) ) ) |
| 35 |
23 34
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( ( 𝑥 𝐷 𝑦 ) − ( 𝐾 · ( 𝑥 𝐷 𝑦 ) ) ) ≤ 0 ) |
| 36 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → 1 ∈ ℂ ) |
| 37 |
32
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → 𝐾 ∈ ℂ ) |
| 38 |
30
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( 𝑥 𝐷 𝑦 ) ∈ ℂ ) |
| 39 |
36 37 38
|
subdird |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( ( 1 − 𝐾 ) · ( 𝑥 𝐷 𝑦 ) ) = ( ( 1 · ( 𝑥 𝐷 𝑦 ) ) − ( 𝐾 · ( 𝑥 𝐷 𝑦 ) ) ) ) |
| 40 |
38
|
mullidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( 1 · ( 𝑥 𝐷 𝑦 ) ) = ( 𝑥 𝐷 𝑦 ) ) |
| 41 |
40
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( ( 1 · ( 𝑥 𝐷 𝑦 ) ) − ( 𝐾 · ( 𝑥 𝐷 𝑦 ) ) ) = ( ( 𝑥 𝐷 𝑦 ) − ( 𝐾 · ( 𝑥 𝐷 𝑦 ) ) ) ) |
| 42 |
39 41
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( ( 1 − 𝐾 ) · ( 𝑥 𝐷 𝑦 ) ) = ( ( 𝑥 𝐷 𝑦 ) − ( 𝐾 · ( 𝑥 𝐷 𝑦 ) ) ) ) |
| 43 |
|
1re |
⊢ 1 ∈ ℝ |
| 44 |
|
resubcl |
⊢ ( ( 1 ∈ ℝ ∧ 𝐾 ∈ ℝ ) → ( 1 − 𝐾 ) ∈ ℝ ) |
| 45 |
43 31 44
|
sylancr |
⊢ ( 𝜑 → ( 1 − 𝐾 ) ∈ ℝ ) |
| 46 |
45
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( 1 − 𝐾 ) ∈ ℝ ) |
| 47 |
46
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( 1 − 𝐾 ) ∈ ℂ ) |
| 48 |
47
|
mul01d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( ( 1 − 𝐾 ) · 0 ) = 0 ) |
| 49 |
35 42 48
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( ( 1 − 𝐾 ) · ( 𝑥 𝐷 𝑦 ) ) ≤ ( ( 1 − 𝐾 ) · 0 ) ) |
| 50 |
|
0red |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → 0 ∈ ℝ ) |
| 51 |
|
posdif |
⊢ ( ( 𝐾 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝐾 < 1 ↔ 0 < ( 1 − 𝐾 ) ) ) |
| 52 |
31 43 51
|
sylancl |
⊢ ( 𝜑 → ( 𝐾 < 1 ↔ 0 < ( 1 − 𝐾 ) ) ) |
| 53 |
4 52
|
mpbid |
⊢ ( 𝜑 → 0 < ( 1 − 𝐾 ) ) |
| 54 |
53
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → 0 < ( 1 − 𝐾 ) ) |
| 55 |
|
lemul2 |
⊢ ( ( ( 𝑥 𝐷 𝑦 ) ∈ ℝ ∧ 0 ∈ ℝ ∧ ( ( 1 − 𝐾 ) ∈ ℝ ∧ 0 < ( 1 − 𝐾 ) ) ) → ( ( 𝑥 𝐷 𝑦 ) ≤ 0 ↔ ( ( 1 − 𝐾 ) · ( 𝑥 𝐷 𝑦 ) ) ≤ ( ( 1 − 𝐾 ) · 0 ) ) ) |
| 56 |
30 50 46 54 55
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( ( 𝑥 𝐷 𝑦 ) ≤ 0 ↔ ( ( 1 − 𝐾 ) · ( 𝑥 𝐷 𝑦 ) ) ≤ ( ( 1 − 𝐾 ) · 0 ) ) ) |
| 57 |
49 56
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( 𝑥 𝐷 𝑦 ) ≤ 0 ) |
| 58 |
|
metge0 |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → 0 ≤ ( 𝑥 𝐷 𝑦 ) ) |
| 59 |
26 27 28 58
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → 0 ≤ ( 𝑥 𝐷 𝑦 ) ) |
| 60 |
|
0re |
⊢ 0 ∈ ℝ |
| 61 |
|
letri3 |
⊢ ( ( ( 𝑥 𝐷 𝑦 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ ( ( 𝑥 𝐷 𝑦 ) ≤ 0 ∧ 0 ≤ ( 𝑥 𝐷 𝑦 ) ) ) ) |
| 62 |
30 60 61
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ ( ( 𝑥 𝐷 𝑦 ) ≤ 0 ∧ 0 ≤ ( 𝑥 𝐷 𝑦 ) ) ) ) |
| 63 |
57 59 62
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( 𝑥 𝐷 𝑦 ) = 0 ) |
| 64 |
|
meteq0 |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ) |
| 65 |
26 27 28 64
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ) |
| 66 |
63 65
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) → 𝑥 = 𝑦 ) |
| 67 |
66
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 68 |
67
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 69 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 70 |
|
id |
⊢ ( 𝑥 = 𝑧 → 𝑥 = 𝑧 ) |
| 71 |
69 70
|
eqeq12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ↔ ( 𝐹 ‘ 𝑧 ) = 𝑧 ) ) |
| 72 |
71
|
anbi1d |
⊢ ( 𝑥 = 𝑧 → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑧 ) = 𝑧 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) ) |
| 73 |
|
equequ1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝑦 ↔ 𝑧 = 𝑦 ) ) |
| 74 |
72 73
|
imbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ( ( 𝐹 ‘ 𝑧 ) = 𝑧 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) → 𝑧 = 𝑦 ) ) ) |
| 75 |
74
|
ralbidv |
⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ 𝑋 ( ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑋 ( ( ( 𝐹 ‘ 𝑧 ) = 𝑧 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) → 𝑧 = 𝑦 ) ) ) |
| 76 |
75
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝐹 ‘ 𝑧 ) = 𝑧 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) → 𝑧 = 𝑦 ) ) |
| 77 |
68 76
|
sylib |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝐹 ‘ 𝑧 ) = 𝑧 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) → 𝑧 = 𝑦 ) ) |
| 78 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 79 |
|
id |
⊢ ( 𝑧 = 𝑦 → 𝑧 = 𝑦 ) |
| 80 |
78 79
|
eqeq12d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝐹 ‘ 𝑧 ) = 𝑧 ↔ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) ) |
| 81 |
80
|
reu4 |
⊢ ( ∃! 𝑧 ∈ 𝑋 ( 𝐹 ‘ 𝑧 ) = 𝑧 ↔ ( ∃ 𝑧 ∈ 𝑋 ( 𝐹 ‘ 𝑧 ) = 𝑧 ∧ ∀ 𝑧 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝐹 ‘ 𝑧 ) = 𝑧 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑦 ) → 𝑧 = 𝑦 ) ) ) |
| 82 |
19 77 81
|
sylanbrc |
⊢ ( 𝜑 → ∃! 𝑧 ∈ 𝑋 ( 𝐹 ‘ 𝑧 ) = 𝑧 ) |