| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bfp.2 |
|
| 2 |
|
bfp.3 |
|
| 3 |
|
bfp.4 |
|
| 4 |
|
bfp.5 |
|
| 5 |
|
bfp.6 |
|
| 6 |
|
bfp.7 |
|
| 7 |
|
n0 |
|
| 8 |
2 7
|
sylib |
|
| 9 |
1
|
adantr |
|
| 10 |
2
|
adantr |
|
| 11 |
3
|
adantr |
|
| 12 |
4
|
adantr |
|
| 13 |
5
|
adantr |
|
| 14 |
6
|
adantlr |
|
| 15 |
|
eqid |
|
| 16 |
|
simpr |
|
| 17 |
|
eqid |
|
| 18 |
9 10 11 12 13 14 15 16 17
|
bfplem2 |
|
| 19 |
8 18
|
exlimddv |
|
| 20 |
|
oveq12 |
|
| 21 |
20
|
adantl |
|
| 22 |
6
|
adantr |
|
| 23 |
21 22
|
eqbrtrrd |
|
| 24 |
|
cmetmet |
|
| 25 |
1 24
|
syl |
|
| 26 |
25
|
ad2antrr |
|
| 27 |
|
simplrl |
|
| 28 |
|
simplrr |
|
| 29 |
|
metcl |
|
| 30 |
26 27 28 29
|
syl3anc |
|
| 31 |
3
|
rpred |
|
| 32 |
31
|
ad2antrr |
|
| 33 |
32 30
|
remulcld |
|
| 34 |
30 33
|
suble0d |
|
| 35 |
23 34
|
mpbird |
|
| 36 |
|
1cnd |
|
| 37 |
32
|
recnd |
|
| 38 |
30
|
recnd |
|
| 39 |
36 37 38
|
subdird |
|
| 40 |
38
|
mullidd |
|
| 41 |
40
|
oveq1d |
|
| 42 |
39 41
|
eqtrd |
|
| 43 |
|
1re |
|
| 44 |
|
resubcl |
|
| 45 |
43 31 44
|
sylancr |
|
| 46 |
45
|
ad2antrr |
|
| 47 |
46
|
recnd |
|
| 48 |
47
|
mul01d |
|
| 49 |
35 42 48
|
3brtr4d |
|
| 50 |
|
0red |
|
| 51 |
|
posdif |
|
| 52 |
31 43 51
|
sylancl |
|
| 53 |
4 52
|
mpbid |
|
| 54 |
53
|
ad2antrr |
|
| 55 |
|
lemul2 |
|
| 56 |
30 50 46 54 55
|
syl112anc |
|
| 57 |
49 56
|
mpbird |
|
| 58 |
|
metge0 |
|
| 59 |
26 27 28 58
|
syl3anc |
|
| 60 |
|
0re |
|
| 61 |
|
letri3 |
|
| 62 |
30 60 61
|
sylancl |
|
| 63 |
57 59 62
|
mpbir2and |
|
| 64 |
|
meteq0 |
|
| 65 |
26 27 28 64
|
syl3anc |
|
| 66 |
63 65
|
mpbid |
|
| 67 |
66
|
ex |
|
| 68 |
67
|
ralrimivva |
|
| 69 |
|
fveq2 |
|
| 70 |
|
id |
|
| 71 |
69 70
|
eqeq12d |
|
| 72 |
71
|
anbi1d |
|
| 73 |
|
equequ1 |
|
| 74 |
72 73
|
imbi12d |
|
| 75 |
74
|
ralbidv |
|
| 76 |
75
|
cbvralvw |
|
| 77 |
68 76
|
sylib |
|
| 78 |
|
fveq2 |
|
| 79 |
|
id |
|
| 80 |
78 79
|
eqeq12d |
|
| 81 |
80
|
reu4 |
|
| 82 |
19 77 81
|
sylanbrc |
|