Step |
Hyp |
Ref |
Expression |
1 |
|
bfp.2 |
|
2 |
|
bfp.3 |
|
3 |
|
bfp.4 |
|
4 |
|
bfp.5 |
|
5 |
|
bfp.6 |
|
6 |
|
bfp.7 |
|
7 |
|
n0 |
|
8 |
2 7
|
sylib |
|
9 |
1
|
adantr |
|
10 |
2
|
adantr |
|
11 |
3
|
adantr |
|
12 |
4
|
adantr |
|
13 |
5
|
adantr |
|
14 |
6
|
adantlr |
|
15 |
|
eqid |
|
16 |
|
simpr |
|
17 |
|
eqid |
|
18 |
9 10 11 12 13 14 15 16 17
|
bfplem2 |
|
19 |
8 18
|
exlimddv |
|
20 |
|
oveq12 |
|
21 |
20
|
adantl |
|
22 |
6
|
adantr |
|
23 |
21 22
|
eqbrtrrd |
|
24 |
|
cmetmet |
|
25 |
1 24
|
syl |
|
26 |
25
|
ad2antrr |
|
27 |
|
simplrl |
|
28 |
|
simplrr |
|
29 |
|
metcl |
|
30 |
26 27 28 29
|
syl3anc |
|
31 |
3
|
rpred |
|
32 |
31
|
ad2antrr |
|
33 |
32 30
|
remulcld |
|
34 |
30 33
|
suble0d |
|
35 |
23 34
|
mpbird |
|
36 |
|
1cnd |
|
37 |
32
|
recnd |
|
38 |
30
|
recnd |
|
39 |
36 37 38
|
subdird |
|
40 |
38
|
mulid2d |
|
41 |
40
|
oveq1d |
|
42 |
39 41
|
eqtrd |
|
43 |
|
1re |
|
44 |
|
resubcl |
|
45 |
43 31 44
|
sylancr |
|
46 |
45
|
ad2antrr |
|
47 |
46
|
recnd |
|
48 |
47
|
mul01d |
|
49 |
35 42 48
|
3brtr4d |
|
50 |
|
0red |
|
51 |
|
posdif |
|
52 |
31 43 51
|
sylancl |
|
53 |
4 52
|
mpbid |
|
54 |
53
|
ad2antrr |
|
55 |
|
lemul2 |
|
56 |
30 50 46 54 55
|
syl112anc |
|
57 |
49 56
|
mpbird |
|
58 |
|
metge0 |
|
59 |
26 27 28 58
|
syl3anc |
|
60 |
|
0re |
|
61 |
|
letri3 |
|
62 |
30 60 61
|
sylancl |
|
63 |
57 59 62
|
mpbir2and |
|
64 |
|
meteq0 |
|
65 |
26 27 28 64
|
syl3anc |
|
66 |
63 65
|
mpbid |
|
67 |
66
|
ex |
|
68 |
67
|
ralrimivva |
|
69 |
|
fveq2 |
|
70 |
|
id |
|
71 |
69 70
|
eqeq12d |
|
72 |
71
|
anbi1d |
|
73 |
|
equequ1 |
|
74 |
72 73
|
imbi12d |
|
75 |
74
|
ralbidv |
|
76 |
75
|
cbvralvw |
|
77 |
68 76
|
sylib |
|
78 |
|
fveq2 |
|
79 |
|
id |
|
80 |
78 79
|
eqeq12d |
|
81 |
80
|
reu4 |
|
82 |
19 77 81
|
sylanbrc |
|