| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dalawlem.l |
|- .<_ = ( le ` K ) |
| 2 |
|
dalawlem.j |
|- .\/ = ( join ` K ) |
| 3 |
|
dalawlem.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
dalawlem.a |
|- A = ( Atoms ` K ) |
| 5 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 6 |
|
simp11 |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> K e. HL ) |
| 7 |
6
|
hllatd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> K e. Lat ) |
| 8 |
|
simp22 |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> Q e. A ) |
| 9 |
|
simp32 |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> T e. A ) |
| 10 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ Q e. A /\ T e. A ) -> ( Q .\/ T ) e. ( Base ` K ) ) |
| 11 |
6 8 9 10
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ T ) e. ( Base ` K ) ) |
| 12 |
|
simp21 |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> P e. A ) |
| 13 |
5 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
| 14 |
12 13
|
syl |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> P e. ( Base ` K ) ) |
| 15 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ ( Q .\/ T ) e. ( Base ` K ) /\ P e. ( Base ` K ) ) -> ( ( Q .\/ T ) .\/ P ) e. ( Base ` K ) ) |
| 16 |
7 11 14 15
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ T ) .\/ P ) e. ( Base ` K ) ) |
| 17 |
|
simp31 |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> S e. A ) |
| 18 |
5 4
|
atbase |
|- ( S e. A -> S e. ( Base ` K ) ) |
| 19 |
17 18
|
syl |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> S e. ( Base ` K ) ) |
| 20 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( ( Q .\/ T ) .\/ P ) e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) e. ( Base ` K ) ) |
| 21 |
7 16 19 20
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) e. ( Base ` K ) ) |
| 22 |
|
simp23 |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> R e. A ) |
| 23 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ Q e. A /\ R e. A ) -> ( Q .\/ R ) e. ( Base ` K ) ) |
| 24 |
6 8 22 23
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ R ) e. ( Base ` K ) ) |
| 25 |
|
simp33 |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> U e. A ) |
| 26 |
5 4
|
atbase |
|- ( U e. A -> U e. ( Base ` K ) ) |
| 27 |
25 26
|
syl |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> U e. ( Base ` K ) ) |
| 28 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( Q .\/ R ) e. ( Base ` K ) /\ U e. ( Base ` K ) ) -> ( ( Q .\/ R ) ./\ U ) e. ( Base ` K ) ) |
| 29 |
7 24 27 28
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ R ) ./\ U ) e. ( Base ` K ) ) |
| 30 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ R e. A /\ P e. A ) -> ( R .\/ P ) e. ( Base ` K ) ) |
| 31 |
6 22 12 30
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( R .\/ P ) e. ( Base ` K ) ) |
| 32 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ U e. A /\ S e. A ) -> ( U .\/ S ) e. ( Base ` K ) ) |
| 33 |
6 25 17 32
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( U .\/ S ) e. ( Base ` K ) ) |
| 34 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( R .\/ P ) e. ( Base ` K ) /\ ( U .\/ S ) e. ( Base ` K ) ) -> ( ( R .\/ P ) ./\ ( U .\/ S ) ) e. ( Base ` K ) ) |
| 35 |
7 31 33 34
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( R .\/ P ) ./\ ( U .\/ S ) ) e. ( Base ` K ) ) |
| 36 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ ( ( Q .\/ R ) ./\ U ) e. ( Base ` K ) /\ ( ( R .\/ P ) ./\ ( U .\/ S ) ) e. ( Base ` K ) ) -> ( ( ( Q .\/ R ) ./\ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) e. ( Base ` K ) ) |
| 37 |
7 29 35 36
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ R ) ./\ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) e. ( Base ` K ) ) |
| 38 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ T e. A /\ U e. A ) -> ( T .\/ U ) e. ( Base ` K ) ) |
| 39 |
6 9 25 38
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( T .\/ U ) e. ( Base ` K ) ) |
| 40 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( Q .\/ R ) e. ( Base ` K ) /\ ( T .\/ U ) e. ( Base ` K ) ) -> ( ( Q .\/ R ) ./\ ( T .\/ U ) ) e. ( Base ` K ) ) |
| 41 |
7 24 39 40
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ R ) ./\ ( T .\/ U ) ) e. ( Base ` K ) ) |
| 42 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ ( ( Q .\/ R ) ./\ ( T .\/ U ) ) e. ( Base ` K ) /\ ( ( R .\/ P ) ./\ ( U .\/ S ) ) e. ( Base ` K ) ) -> ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) e. ( Base ` K ) ) |
| 43 |
7 41 35 42
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) e. ( Base ` K ) ) |
| 44 |
5 4
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
| 45 |
8 44
|
syl |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> Q e. ( Base ` K ) ) |
| 46 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ Q e. ( Base ` K ) /\ U e. ( Base ` K ) ) -> ( Q ./\ U ) e. ( Base ` K ) ) |
| 47 |
7 45 27 46
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q ./\ U ) e. ( Base ` K ) ) |
| 48 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ S e. A ) -> ( P .\/ S ) e. ( Base ` K ) ) |
| 49 |
6 12 17 48
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ S ) e. ( Base ` K ) ) |
| 50 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( P .\/ S ) e. ( Base ` K ) /\ Q e. ( Base ` K ) ) -> ( ( P .\/ S ) ./\ Q ) e. ( Base ` K ) ) |
| 51 |
7 49 45 50
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ Q ) e. ( Base ` K ) ) |
| 52 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ ( Q ./\ U ) e. ( Base ` K ) /\ ( ( P .\/ S ) ./\ Q ) e. ( Base ` K ) ) -> ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ Q ) ) e. ( Base ` K ) ) |
| 53 |
7 47 51 52
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ Q ) ) e. ( Base ` K ) ) |
| 54 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ Q ) ) e. ( Base ` K ) ) -> ( P .\/ ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ Q ) ) ) e. ( Base ` K ) ) |
| 55 |
7 14 53 54
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ Q ) ) ) e. ( Base ` K ) ) |
| 56 |
5 4
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
| 57 |
22 56
|
syl |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> R e. ( Base ` K ) ) |
| 58 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ R e. ( Base ` K ) /\ ( ( Q .\/ R ) ./\ U ) e. ( Base ` K ) ) -> ( R .\/ ( ( Q .\/ R ) ./\ U ) ) e. ( Base ` K ) ) |
| 59 |
7 57 29 58
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( R .\/ ( ( Q .\/ R ) ./\ U ) ) e. ( Base ` K ) ) |
| 60 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) e. ( Base ` K ) ) -> ( P .\/ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) ) e. ( Base ` K ) ) |
| 61 |
7 14 59 60
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) ) e. ( Base ` K ) ) |
| 62 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ ( Q ./\ U ) e. ( Base ` K ) /\ P e. ( Base ` K ) ) -> ( ( Q ./\ U ) .\/ P ) e. ( Base ` K ) ) |
| 63 |
7 47 14 62
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q ./\ U ) .\/ P ) e. ( Base ` K ) ) |
| 64 |
5 1 2 3
|
latmlej22 |
|- ( ( K e. Lat /\ ( S e. ( Base ` K ) /\ ( ( Q .\/ T ) .\/ P ) e. ( Base ` K ) /\ ( ( Q ./\ U ) .\/ P ) e. ( Base ` K ) ) ) -> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( ( Q ./\ U ) .\/ P ) .\/ S ) ) |
| 65 |
7 19 16 63 64
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( ( Q ./\ U ) .\/ P ) .\/ S ) ) |
| 66 |
5 2
|
latjass |
|- ( ( K e. Lat /\ ( ( Q ./\ U ) e. ( Base ` K ) /\ P e. ( Base ` K ) /\ S e. ( Base ` K ) ) ) -> ( ( ( Q ./\ U ) .\/ P ) .\/ S ) = ( ( Q ./\ U ) .\/ ( P .\/ S ) ) ) |
| 67 |
7 47 14 19 66
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q ./\ U ) .\/ P ) .\/ S ) = ( ( Q ./\ U ) .\/ ( P .\/ S ) ) ) |
| 68 |
65 67
|
breqtrd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( Q ./\ U ) .\/ ( P .\/ S ) ) ) |
| 69 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( Q .\/ T ) e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) ) -> ( ( Q .\/ T ) ./\ ( P .\/ S ) ) e. ( Base ` K ) ) |
| 70 |
7 11 49 69
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ T ) ./\ ( P .\/ S ) ) e. ( Base ` K ) ) |
| 71 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ ( ( Q .\/ T ) ./\ ( P .\/ S ) ) e. ( Base ` K ) /\ P e. ( Base ` K ) ) -> ( ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .\/ P ) e. ( Base ` K ) ) |
| 72 |
7 70 14 71
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .\/ P ) e. ( Base ` K ) ) |
| 73 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 74 |
6 12 8 73
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 75 |
1 2 4
|
hlatlej2 |
|- ( ( K e. HL /\ P e. A /\ S e. A ) -> S .<_ ( P .\/ S ) ) |
| 76 |
6 12 17 75
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> S .<_ ( P .\/ S ) ) |
| 77 |
5 1 3
|
latmlem2 |
|- ( ( K e. Lat /\ ( S e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) /\ ( ( Q .\/ T ) .\/ P ) e. ( Base ` K ) ) ) -> ( S .<_ ( P .\/ S ) -> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( ( Q .\/ T ) .\/ P ) ./\ ( P .\/ S ) ) ) ) |
| 78 |
7 19 49 16 77
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( S .<_ ( P .\/ S ) -> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( ( Q .\/ T ) .\/ P ) ./\ ( P .\/ S ) ) ) ) |
| 79 |
76 78
|
mpd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( ( Q .\/ T ) .\/ P ) ./\ ( P .\/ S ) ) ) |
| 80 |
1 2 4
|
hlatlej1 |
|- ( ( K e. HL /\ P e. A /\ S e. A ) -> P .<_ ( P .\/ S ) ) |
| 81 |
6 12 17 80
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> P .<_ ( P .\/ S ) ) |
| 82 |
5 1 2 3 4
|
atmod4i1 |
|- ( ( K e. HL /\ ( P e. A /\ ( Q .\/ T ) e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) ) /\ P .<_ ( P .\/ S ) ) -> ( ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .\/ P ) = ( ( ( Q .\/ T ) .\/ P ) ./\ ( P .\/ S ) ) ) |
| 83 |
6 12 11 49 81 82
|
syl131anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .\/ P ) = ( ( ( Q .\/ T ) .\/ P ) ./\ ( P .\/ S ) ) ) |
| 84 |
79 83
|
breqtrrd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .\/ P ) ) |
| 85 |
5 3
|
latmcom |
|- ( ( K e. Lat /\ ( Q .\/ T ) e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) ) -> ( ( Q .\/ T ) ./\ ( P .\/ S ) ) = ( ( P .\/ S ) ./\ ( Q .\/ T ) ) ) |
| 86 |
7 11 49 85
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ T ) ./\ ( P .\/ S ) ) = ( ( P .\/ S ) ./\ ( Q .\/ T ) ) ) |
| 87 |
|
simp12 |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) ) |
| 88 |
86 87
|
eqbrtrd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .<_ ( P .\/ Q ) ) |
| 89 |
1 2 4
|
hlatlej1 |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> P .<_ ( P .\/ Q ) ) |
| 90 |
6 12 8 89
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> P .<_ ( P .\/ Q ) ) |
| 91 |
5 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( ( ( Q .\/ T ) ./\ ( P .\/ S ) ) e. ( Base ` K ) /\ P e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) ) -> ( ( ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .<_ ( P .\/ Q ) /\ P .<_ ( P .\/ Q ) ) <-> ( ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .\/ P ) .<_ ( P .\/ Q ) ) ) |
| 92 |
7 70 14 74 91
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .<_ ( P .\/ Q ) /\ P .<_ ( P .\/ Q ) ) <-> ( ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .\/ P ) .<_ ( P .\/ Q ) ) ) |
| 93 |
88 90 92
|
mpbi2and |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .\/ P ) .<_ ( P .\/ Q ) ) |
| 94 |
5 1 7 21 72 74 84 93
|
lattrd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( P .\/ Q ) ) |
| 95 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ ( Q ./\ U ) e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) ) -> ( ( Q ./\ U ) .\/ ( P .\/ S ) ) e. ( Base ` K ) ) |
| 96 |
7 47 49 95
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q ./\ U ) .\/ ( P .\/ S ) ) e. ( Base ` K ) ) |
| 97 |
5 1 3
|
latlem12 |
|- ( ( K e. Lat /\ ( ( ( ( Q .\/ T ) .\/ P ) ./\ S ) e. ( Base ` K ) /\ ( ( Q ./\ U ) .\/ ( P .\/ S ) ) e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) ) -> ( ( ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( Q ./\ U ) .\/ ( P .\/ S ) ) /\ ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( P .\/ Q ) ) <-> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( ( Q ./\ U ) .\/ ( P .\/ S ) ) ./\ ( P .\/ Q ) ) ) ) |
| 98 |
7 21 96 74 97
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( Q ./\ U ) .\/ ( P .\/ S ) ) /\ ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( P .\/ Q ) ) <-> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( ( Q ./\ U ) .\/ ( P .\/ S ) ) ./\ ( P .\/ Q ) ) ) ) |
| 99 |
68 94 98
|
mpbi2and |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( ( Q ./\ U ) .\/ ( P .\/ S ) ) ./\ ( P .\/ Q ) ) ) |
| 100 |
5 1 2 3 4
|
atmod3i1 |
|- ( ( K e. HL /\ ( P e. A /\ ( P .\/ S ) e. ( Base ` K ) /\ Q e. ( Base ` K ) ) /\ P .<_ ( P .\/ S ) ) -> ( P .\/ ( ( P .\/ S ) ./\ Q ) ) = ( ( P .\/ S ) ./\ ( P .\/ Q ) ) ) |
| 101 |
6 12 49 45 81 100
|
syl131anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ ( ( P .\/ S ) ./\ Q ) ) = ( ( P .\/ S ) ./\ ( P .\/ Q ) ) ) |
| 102 |
101
|
oveq2d |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q ./\ U ) .\/ ( P .\/ ( ( P .\/ S ) ./\ Q ) ) ) = ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ ( P .\/ Q ) ) ) ) |
| 103 |
5 2
|
latj12 |
|- ( ( K e. Lat /\ ( ( Q ./\ U ) e. ( Base ` K ) /\ P e. ( Base ` K ) /\ ( ( P .\/ S ) ./\ Q ) e. ( Base ` K ) ) ) -> ( ( Q ./\ U ) .\/ ( P .\/ ( ( P .\/ S ) ./\ Q ) ) ) = ( P .\/ ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ Q ) ) ) ) |
| 104 |
7 47 14 51 103
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q ./\ U ) .\/ ( P .\/ ( ( P .\/ S ) ./\ Q ) ) ) = ( P .\/ ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ Q ) ) ) ) |
| 105 |
5 1 2 3
|
latmlej12 |
|- ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ U e. ( Base ` K ) /\ P e. ( Base ` K ) ) ) -> ( Q ./\ U ) .<_ ( P .\/ Q ) ) |
| 106 |
7 45 27 14 105
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q ./\ U ) .<_ ( P .\/ Q ) ) |
| 107 |
5 1 2 3 4
|
atmod1i1m |
|- ( ( ( K e. HL /\ U e. A ) /\ ( Q e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) /\ ( Q ./\ U ) .<_ ( P .\/ Q ) ) -> ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ ( P .\/ Q ) ) ) = ( ( ( Q ./\ U ) .\/ ( P .\/ S ) ) ./\ ( P .\/ Q ) ) ) |
| 108 |
6 25 45 49 74 106 107
|
syl231anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ ( P .\/ Q ) ) ) = ( ( ( Q ./\ U ) .\/ ( P .\/ S ) ) ./\ ( P .\/ Q ) ) ) |
| 109 |
102 104 108
|
3eqtr3rd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q ./\ U ) .\/ ( P .\/ S ) ) ./\ ( P .\/ Q ) ) = ( P .\/ ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ Q ) ) ) ) |
| 110 |
99 109
|
breqtrd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( P .\/ ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ Q ) ) ) ) |
| 111 |
1 2 4
|
hlatlej1 |
|- ( ( K e. HL /\ Q e. A /\ R e. A ) -> Q .<_ ( Q .\/ R ) ) |
| 112 |
6 8 22 111
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> Q .<_ ( Q .\/ R ) ) |
| 113 |
1 2 4
|
hlatlej2 |
|- ( ( K e. HL /\ R e. A /\ U e. A ) -> U .<_ ( R .\/ U ) ) |
| 114 |
6 22 25 113
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> U .<_ ( R .\/ U ) ) |
| 115 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( P .\/ S ) e. ( Base ` K ) /\ ( Q .\/ T ) e. ( Base ` K ) ) -> ( ( P .\/ S ) ./\ ( Q .\/ T ) ) e. ( Base ` K ) ) |
| 116 |
7 49 11 115
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ ( Q .\/ T ) ) e. ( Base ` K ) ) |
| 117 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ R e. A /\ U e. A ) -> ( R .\/ U ) e. ( Base ` K ) ) |
| 118 |
6 22 25 117
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( R .\/ U ) e. ( Base ` K ) ) |
| 119 |
1 2 4
|
hlatlej1 |
|- ( ( K e. HL /\ Q e. A /\ T e. A ) -> Q .<_ ( Q .\/ T ) ) |
| 120 |
6 8 9 119
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> Q .<_ ( Q .\/ T ) ) |
| 121 |
5 1 3
|
latmlem2 |
|- ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ ( Q .\/ T ) e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) ) ) -> ( Q .<_ ( Q .\/ T ) -> ( ( P .\/ S ) ./\ Q ) .<_ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) ) ) |
| 122 |
7 45 11 49 121
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .<_ ( Q .\/ T ) -> ( ( P .\/ S ) ./\ Q ) .<_ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) ) ) |
| 123 |
120 122
|
mpd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ Q ) .<_ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) ) |
| 124 |
|
simp13 |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) |
| 125 |
5 1 7 51 116 118 123 124
|
lattrd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ Q ) .<_ ( R .\/ U ) ) |
| 126 |
5 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( U e. ( Base ` K ) /\ ( ( P .\/ S ) ./\ Q ) e. ( Base ` K ) /\ ( R .\/ U ) e. ( Base ` K ) ) ) -> ( ( U .<_ ( R .\/ U ) /\ ( ( P .\/ S ) ./\ Q ) .<_ ( R .\/ U ) ) <-> ( U .\/ ( ( P .\/ S ) ./\ Q ) ) .<_ ( R .\/ U ) ) ) |
| 127 |
7 27 51 118 126
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( U .<_ ( R .\/ U ) /\ ( ( P .\/ S ) ./\ Q ) .<_ ( R .\/ U ) ) <-> ( U .\/ ( ( P .\/ S ) ./\ Q ) ) .<_ ( R .\/ U ) ) ) |
| 128 |
114 125 127
|
mpbi2and |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( U .\/ ( ( P .\/ S ) ./\ Q ) ) .<_ ( R .\/ U ) ) |
| 129 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ U e. ( Base ` K ) /\ ( ( P .\/ S ) ./\ Q ) e. ( Base ` K ) ) -> ( U .\/ ( ( P .\/ S ) ./\ Q ) ) e. ( Base ` K ) ) |
| 130 |
7 27 51 129
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( U .\/ ( ( P .\/ S ) ./\ Q ) ) e. ( Base ` K ) ) |
| 131 |
5 1 3
|
latmlem12 |
|- ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ ( Q .\/ R ) e. ( Base ` K ) ) /\ ( ( U .\/ ( ( P .\/ S ) ./\ Q ) ) e. ( Base ` K ) /\ ( R .\/ U ) e. ( Base ` K ) ) ) -> ( ( Q .<_ ( Q .\/ R ) /\ ( U .\/ ( ( P .\/ S ) ./\ Q ) ) .<_ ( R .\/ U ) ) -> ( Q ./\ ( U .\/ ( ( P .\/ S ) ./\ Q ) ) ) .<_ ( ( Q .\/ R ) ./\ ( R .\/ U ) ) ) ) |
| 132 |
7 45 24 130 118 131
|
syl122anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .<_ ( Q .\/ R ) /\ ( U .\/ ( ( P .\/ S ) ./\ Q ) ) .<_ ( R .\/ U ) ) -> ( Q ./\ ( U .\/ ( ( P .\/ S ) ./\ Q ) ) ) .<_ ( ( Q .\/ R ) ./\ ( R .\/ U ) ) ) ) |
| 133 |
112 128 132
|
mp2and |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q ./\ ( U .\/ ( ( P .\/ S ) ./\ Q ) ) ) .<_ ( ( Q .\/ R ) ./\ ( R .\/ U ) ) ) |
| 134 |
5 1 3
|
latmle2 |
|- ( ( K e. Lat /\ ( P .\/ S ) e. ( Base ` K ) /\ Q e. ( Base ` K ) ) -> ( ( P .\/ S ) ./\ Q ) .<_ Q ) |
| 135 |
7 49 45 134
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ Q ) .<_ Q ) |
| 136 |
5 1 2 3 4
|
atmod2i2 |
|- ( ( K e. HL /\ ( U e. A /\ Q e. ( Base ` K ) /\ ( ( P .\/ S ) ./\ Q ) e. ( Base ` K ) ) /\ ( ( P .\/ S ) ./\ Q ) .<_ Q ) -> ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ Q ) ) = ( Q ./\ ( U .\/ ( ( P .\/ S ) ./\ Q ) ) ) ) |
| 137 |
6 25 45 51 135 136
|
syl131anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ Q ) ) = ( Q ./\ ( U .\/ ( ( P .\/ S ) ./\ Q ) ) ) ) |
| 138 |
1 2 4
|
hlatlej2 |
|- ( ( K e. HL /\ Q e. A /\ R e. A ) -> R .<_ ( Q .\/ R ) ) |
| 139 |
6 8 22 138
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> R .<_ ( Q .\/ R ) ) |
| 140 |
5 1 2 3 4
|
atmod3i2 |
|- ( ( K e. HL /\ ( U e. A /\ R e. ( Base ` K ) /\ ( Q .\/ R ) e. ( Base ` K ) ) /\ R .<_ ( Q .\/ R ) ) -> ( R .\/ ( ( Q .\/ R ) ./\ U ) ) = ( ( Q .\/ R ) ./\ ( R .\/ U ) ) ) |
| 141 |
6 25 57 24 139 140
|
syl131anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( R .\/ ( ( Q .\/ R ) ./\ U ) ) = ( ( Q .\/ R ) ./\ ( R .\/ U ) ) ) |
| 142 |
133 137 141
|
3brtr4d |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ Q ) ) .<_ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) ) |
| 143 |
5 1 2
|
latjlej2 |
|- ( ( K e. Lat /\ ( ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ Q ) ) e. ( Base ` K ) /\ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) e. ( Base ` K ) /\ P e. ( Base ` K ) ) ) -> ( ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ Q ) ) .<_ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) -> ( P .\/ ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ Q ) ) ) .<_ ( P .\/ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) ) ) ) |
| 144 |
7 53 59 14 143
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ Q ) ) .<_ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) -> ( P .\/ ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ Q ) ) ) .<_ ( P .\/ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) ) ) ) |
| 145 |
142 144
|
mpd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ Q ) ) ) .<_ ( P .\/ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) ) ) |
| 146 |
5 1 7 21 55 61 110 145
|
lattrd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( P .\/ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) ) ) |
| 147 |
5 2
|
latj13 |
|- ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ R e. ( Base ` K ) /\ ( ( Q .\/ R ) ./\ U ) e. ( Base ` K ) ) ) -> ( P .\/ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) ) = ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) ) |
| 148 |
7 14 57 29 147
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) ) = ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) ) |
| 149 |
146 148
|
breqtrd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) ) |
| 150 |
5 1 2 3
|
latmlej22 |
|- ( ( K e. Lat /\ ( S e. ( Base ` K ) /\ ( ( Q .\/ T ) .\/ P ) e. ( Base ` K ) /\ U e. ( Base ` K ) ) ) -> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( U .\/ S ) ) |
| 151 |
7 19 16 27 150
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( U .\/ S ) ) |
| 152 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ ( ( Q .\/ R ) ./\ U ) e. ( Base ` K ) /\ ( R .\/ P ) e. ( Base ` K ) ) -> ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) e. ( Base ` K ) ) |
| 153 |
7 29 31 152
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) e. ( Base ` K ) ) |
| 154 |
5 1 3
|
latlem12 |
|- ( ( K e. Lat /\ ( ( ( ( Q .\/ T ) .\/ P ) ./\ S ) e. ( Base ` K ) /\ ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) e. ( Base ` K ) /\ ( U .\/ S ) e. ( Base ` K ) ) ) -> ( ( ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) /\ ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( U .\/ S ) ) <-> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) ./\ ( U .\/ S ) ) ) ) |
| 155 |
7 21 153 33 154
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) /\ ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( U .\/ S ) ) <-> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) ./\ ( U .\/ S ) ) ) ) |
| 156 |
149 151 155
|
mpbi2and |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) ./\ ( U .\/ S ) ) ) |
| 157 |
5 1 2 3
|
latmlej21 |
|- ( ( K e. Lat /\ ( U e. ( Base ` K ) /\ ( Q .\/ R ) e. ( Base ` K ) /\ S e. ( Base ` K ) ) ) -> ( ( Q .\/ R ) ./\ U ) .<_ ( U .\/ S ) ) |
| 158 |
7 27 24 19 157
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ R ) ./\ U ) .<_ ( U .\/ S ) ) |
| 159 |
5 1 2 3 4
|
atmod1i1m |
|- ( ( ( K e. HL /\ U e. A ) /\ ( ( Q .\/ R ) e. ( Base ` K ) /\ ( R .\/ P ) e. ( Base ` K ) /\ ( U .\/ S ) e. ( Base ` K ) ) /\ ( ( Q .\/ R ) ./\ U ) .<_ ( U .\/ S ) ) -> ( ( ( Q .\/ R ) ./\ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) = ( ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) ./\ ( U .\/ S ) ) ) |
| 160 |
6 25 24 31 33 158 159
|
syl231anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ R ) ./\ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) = ( ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) ./\ ( U .\/ S ) ) ) |
| 161 |
156 160
|
breqtrrd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( ( Q .\/ R ) ./\ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) |
| 162 |
1 2 4
|
hlatlej2 |
|- ( ( K e. HL /\ T e. A /\ U e. A ) -> U .<_ ( T .\/ U ) ) |
| 163 |
6 9 25 162
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> U .<_ ( T .\/ U ) ) |
| 164 |
5 1 3
|
latmlem2 |
|- ( ( K e. Lat /\ ( U e. ( Base ` K ) /\ ( T .\/ U ) e. ( Base ` K ) /\ ( Q .\/ R ) e. ( Base ` K ) ) ) -> ( U .<_ ( T .\/ U ) -> ( ( Q .\/ R ) ./\ U ) .<_ ( ( Q .\/ R ) ./\ ( T .\/ U ) ) ) ) |
| 165 |
7 27 39 24 164
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( U .<_ ( T .\/ U ) -> ( ( Q .\/ R ) ./\ U ) .<_ ( ( Q .\/ R ) ./\ ( T .\/ U ) ) ) ) |
| 166 |
163 165
|
mpd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ R ) ./\ U ) .<_ ( ( Q .\/ R ) ./\ ( T .\/ U ) ) ) |
| 167 |
5 1 2
|
latjlej1 |
|- ( ( K e. Lat /\ ( ( ( Q .\/ R ) ./\ U ) e. ( Base ` K ) /\ ( ( Q .\/ R ) ./\ ( T .\/ U ) ) e. ( Base ` K ) /\ ( ( R .\/ P ) ./\ ( U .\/ S ) ) e. ( Base ` K ) ) ) -> ( ( ( Q .\/ R ) ./\ U ) .<_ ( ( Q .\/ R ) ./\ ( T .\/ U ) ) -> ( ( ( Q .\/ R ) ./\ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) ) |
| 168 |
7 29 41 35 167
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ R ) ./\ U ) .<_ ( ( Q .\/ R ) ./\ ( T .\/ U ) ) -> ( ( ( Q .\/ R ) ./\ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) ) |
| 169 |
166 168
|
mpd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ R ) ./\ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) |
| 170 |
5 1 7 21 37 43 161 169
|
lattrd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) |