| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvferm.a |
|- ( ph -> F : X --> RR ) |
| 2 |
|
dvferm.b |
|- ( ph -> X C_ RR ) |
| 3 |
|
dvferm.u |
|- ( ph -> U e. ( A (,) B ) ) |
| 4 |
|
dvferm.s |
|- ( ph -> ( A (,) B ) C_ X ) |
| 5 |
|
dvferm.d |
|- ( ph -> U e. dom ( RR _D F ) ) |
| 6 |
|
dvferm1.r |
|- ( ph -> A. y e. ( U (,) B ) ( F ` y ) <_ ( F ` U ) ) |
| 7 |
|
dvferm1.z |
|- ( ph -> 0 < ( ( RR _D F ) ` U ) ) |
| 8 |
|
dvferm1.t |
|- ( ph -> T e. RR+ ) |
| 9 |
|
dvferm1.l |
|- ( ph -> A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < T ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) ) ) |
| 10 |
|
dvferm1.x |
|- S = ( ( U + if ( B <_ ( U + T ) , B , ( U + T ) ) ) / 2 ) |
| 11 |
|
dvfre |
|- ( ( F : X --> RR /\ X C_ RR ) -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
| 12 |
1 2 11
|
syl2anc |
|- ( ph -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
| 13 |
12 5
|
ffvelcdmd |
|- ( ph -> ( ( RR _D F ) ` U ) e. RR ) |
| 14 |
13
|
recnd |
|- ( ph -> ( ( RR _D F ) ` U ) e. CC ) |
| 15 |
14
|
subidd |
|- ( ph -> ( ( ( RR _D F ) ` U ) - ( ( RR _D F ) ` U ) ) = 0 ) |
| 16 |
|
ioossre |
|- ( A (,) B ) C_ RR |
| 17 |
16 3
|
sselid |
|- ( ph -> U e. RR ) |
| 18 |
|
eliooord |
|- ( U e. ( A (,) B ) -> ( A < U /\ U < B ) ) |
| 19 |
3 18
|
syl |
|- ( ph -> ( A < U /\ U < B ) ) |
| 20 |
19
|
simprd |
|- ( ph -> U < B ) |
| 21 |
17 8
|
ltaddrpd |
|- ( ph -> U < ( U + T ) ) |
| 22 |
|
breq2 |
|- ( B = if ( B <_ ( U + T ) , B , ( U + T ) ) -> ( U < B <-> U < if ( B <_ ( U + T ) , B , ( U + T ) ) ) ) |
| 23 |
|
breq2 |
|- ( ( U + T ) = if ( B <_ ( U + T ) , B , ( U + T ) ) -> ( U < ( U + T ) <-> U < if ( B <_ ( U + T ) , B , ( U + T ) ) ) ) |
| 24 |
22 23
|
ifboth |
|- ( ( U < B /\ U < ( U + T ) ) -> U < if ( B <_ ( U + T ) , B , ( U + T ) ) ) |
| 25 |
20 21 24
|
syl2anc |
|- ( ph -> U < if ( B <_ ( U + T ) , B , ( U + T ) ) ) |
| 26 |
|
ne0i |
|- ( U e. ( A (,) B ) -> ( A (,) B ) =/= (/) ) |
| 27 |
|
ndmioo |
|- ( -. ( A e. RR* /\ B e. RR* ) -> ( A (,) B ) = (/) ) |
| 28 |
27
|
necon1ai |
|- ( ( A (,) B ) =/= (/) -> ( A e. RR* /\ B e. RR* ) ) |
| 29 |
3 26 28
|
3syl |
|- ( ph -> ( A e. RR* /\ B e. RR* ) ) |
| 30 |
29
|
simprd |
|- ( ph -> B e. RR* ) |
| 31 |
8
|
rpred |
|- ( ph -> T e. RR ) |
| 32 |
17 31
|
readdcld |
|- ( ph -> ( U + T ) e. RR ) |
| 33 |
32
|
rexrd |
|- ( ph -> ( U + T ) e. RR* ) |
| 34 |
30 33
|
ifcld |
|- ( ph -> if ( B <_ ( U + T ) , B , ( U + T ) ) e. RR* ) |
| 35 |
|
mnfxr |
|- -oo e. RR* |
| 36 |
35
|
a1i |
|- ( ph -> -oo e. RR* ) |
| 37 |
17
|
rexrd |
|- ( ph -> U e. RR* ) |
| 38 |
17
|
mnfltd |
|- ( ph -> -oo < U ) |
| 39 |
36 37 30 38 20
|
xrlttrd |
|- ( ph -> -oo < B ) |
| 40 |
32
|
mnfltd |
|- ( ph -> -oo < ( U + T ) ) |
| 41 |
|
breq2 |
|- ( B = if ( B <_ ( U + T ) , B , ( U + T ) ) -> ( -oo < B <-> -oo < if ( B <_ ( U + T ) , B , ( U + T ) ) ) ) |
| 42 |
|
breq2 |
|- ( ( U + T ) = if ( B <_ ( U + T ) , B , ( U + T ) ) -> ( -oo < ( U + T ) <-> -oo < if ( B <_ ( U + T ) , B , ( U + T ) ) ) ) |
| 43 |
41 42
|
ifboth |
|- ( ( -oo < B /\ -oo < ( U + T ) ) -> -oo < if ( B <_ ( U + T ) , B , ( U + T ) ) ) |
| 44 |
39 40 43
|
syl2anc |
|- ( ph -> -oo < if ( B <_ ( U + T ) , B , ( U + T ) ) ) |
| 45 |
|
xrmin2 |
|- ( ( B e. RR* /\ ( U + T ) e. RR* ) -> if ( B <_ ( U + T ) , B , ( U + T ) ) <_ ( U + T ) ) |
| 46 |
30 33 45
|
syl2anc |
|- ( ph -> if ( B <_ ( U + T ) , B , ( U + T ) ) <_ ( U + T ) ) |
| 47 |
|
xrre |
|- ( ( ( if ( B <_ ( U + T ) , B , ( U + T ) ) e. RR* /\ ( U + T ) e. RR ) /\ ( -oo < if ( B <_ ( U + T ) , B , ( U + T ) ) /\ if ( B <_ ( U + T ) , B , ( U + T ) ) <_ ( U + T ) ) ) -> if ( B <_ ( U + T ) , B , ( U + T ) ) e. RR ) |
| 48 |
34 32 44 46 47
|
syl22anc |
|- ( ph -> if ( B <_ ( U + T ) , B , ( U + T ) ) e. RR ) |
| 49 |
|
avglt1 |
|- ( ( U e. RR /\ if ( B <_ ( U + T ) , B , ( U + T ) ) e. RR ) -> ( U < if ( B <_ ( U + T ) , B , ( U + T ) ) <-> U < ( ( U + if ( B <_ ( U + T ) , B , ( U + T ) ) ) / 2 ) ) ) |
| 50 |
17 48 49
|
syl2anc |
|- ( ph -> ( U < if ( B <_ ( U + T ) , B , ( U + T ) ) <-> U < ( ( U + if ( B <_ ( U + T ) , B , ( U + T ) ) ) / 2 ) ) ) |
| 51 |
25 50
|
mpbid |
|- ( ph -> U < ( ( U + if ( B <_ ( U + T ) , B , ( U + T ) ) ) / 2 ) ) |
| 52 |
51 10
|
breqtrrdi |
|- ( ph -> U < S ) |
| 53 |
17 52
|
gtned |
|- ( ph -> S =/= U ) |
| 54 |
17 48
|
readdcld |
|- ( ph -> ( U + if ( B <_ ( U + T ) , B , ( U + T ) ) ) e. RR ) |
| 55 |
54
|
rehalfcld |
|- ( ph -> ( ( U + if ( B <_ ( U + T ) , B , ( U + T ) ) ) / 2 ) e. RR ) |
| 56 |
10 55
|
eqeltrid |
|- ( ph -> S e. RR ) |
| 57 |
17 56 52
|
ltled |
|- ( ph -> U <_ S ) |
| 58 |
17 56 57
|
abssubge0d |
|- ( ph -> ( abs ` ( S - U ) ) = ( S - U ) ) |
| 59 |
|
avglt2 |
|- ( ( U e. RR /\ if ( B <_ ( U + T ) , B , ( U + T ) ) e. RR ) -> ( U < if ( B <_ ( U + T ) , B , ( U + T ) ) <-> ( ( U + if ( B <_ ( U + T ) , B , ( U + T ) ) ) / 2 ) < if ( B <_ ( U + T ) , B , ( U + T ) ) ) ) |
| 60 |
17 48 59
|
syl2anc |
|- ( ph -> ( U < if ( B <_ ( U + T ) , B , ( U + T ) ) <-> ( ( U + if ( B <_ ( U + T ) , B , ( U + T ) ) ) / 2 ) < if ( B <_ ( U + T ) , B , ( U + T ) ) ) ) |
| 61 |
25 60
|
mpbid |
|- ( ph -> ( ( U + if ( B <_ ( U + T ) , B , ( U + T ) ) ) / 2 ) < if ( B <_ ( U + T ) , B , ( U + T ) ) ) |
| 62 |
10 61
|
eqbrtrid |
|- ( ph -> S < if ( B <_ ( U + T ) , B , ( U + T ) ) ) |
| 63 |
56 48 32 62 46
|
ltletrd |
|- ( ph -> S < ( U + T ) ) |
| 64 |
56 17 31
|
ltsubadd2d |
|- ( ph -> ( ( S - U ) < T <-> S < ( U + T ) ) ) |
| 65 |
63 64
|
mpbird |
|- ( ph -> ( S - U ) < T ) |
| 66 |
58 65
|
eqbrtrd |
|- ( ph -> ( abs ` ( S - U ) ) < T ) |
| 67 |
|
neeq1 |
|- ( z = S -> ( z =/= U <-> S =/= U ) ) |
| 68 |
|
fvoveq1 |
|- ( z = S -> ( abs ` ( z - U ) ) = ( abs ` ( S - U ) ) ) |
| 69 |
68
|
breq1d |
|- ( z = S -> ( ( abs ` ( z - U ) ) < T <-> ( abs ` ( S - U ) ) < T ) ) |
| 70 |
67 69
|
anbi12d |
|- ( z = S -> ( ( z =/= U /\ ( abs ` ( z - U ) ) < T ) <-> ( S =/= U /\ ( abs ` ( S - U ) ) < T ) ) ) |
| 71 |
|
fveq2 |
|- ( z = S -> ( F ` z ) = ( F ` S ) ) |
| 72 |
71
|
oveq1d |
|- ( z = S -> ( ( F ` z ) - ( F ` U ) ) = ( ( F ` S ) - ( F ` U ) ) ) |
| 73 |
|
oveq1 |
|- ( z = S -> ( z - U ) = ( S - U ) ) |
| 74 |
72 73
|
oveq12d |
|- ( z = S -> ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) = ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) ) |
| 75 |
74
|
fvoveq1d |
|- ( z = S -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) = ( abs ` ( ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) - ( ( RR _D F ) ` U ) ) ) ) |
| 76 |
75
|
breq1d |
|- ( z = S -> ( ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) <-> ( abs ` ( ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) ) ) |
| 77 |
70 76
|
imbi12d |
|- ( z = S -> ( ( ( z =/= U /\ ( abs ` ( z - U ) ) < T ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) ) <-> ( ( S =/= U /\ ( abs ` ( S - U ) ) < T ) -> ( abs ` ( ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) ) ) ) |
| 78 |
29
|
simpld |
|- ( ph -> A e. RR* ) |
| 79 |
19
|
simpld |
|- ( ph -> A < U ) |
| 80 |
78 37 79
|
xrltled |
|- ( ph -> A <_ U ) |
| 81 |
|
iooss1 |
|- ( ( A e. RR* /\ A <_ U ) -> ( U (,) B ) C_ ( A (,) B ) ) |
| 82 |
78 80 81
|
syl2anc |
|- ( ph -> ( U (,) B ) C_ ( A (,) B ) ) |
| 83 |
82 4
|
sstrd |
|- ( ph -> ( U (,) B ) C_ X ) |
| 84 |
56
|
rexrd |
|- ( ph -> S e. RR* ) |
| 85 |
|
xrmin1 |
|- ( ( B e. RR* /\ ( U + T ) e. RR* ) -> if ( B <_ ( U + T ) , B , ( U + T ) ) <_ B ) |
| 86 |
30 33 85
|
syl2anc |
|- ( ph -> if ( B <_ ( U + T ) , B , ( U + T ) ) <_ B ) |
| 87 |
84 34 30 62 86
|
xrltletrd |
|- ( ph -> S < B ) |
| 88 |
|
elioo2 |
|- ( ( U e. RR* /\ B e. RR* ) -> ( S e. ( U (,) B ) <-> ( S e. RR /\ U < S /\ S < B ) ) ) |
| 89 |
37 30 88
|
syl2anc |
|- ( ph -> ( S e. ( U (,) B ) <-> ( S e. RR /\ U < S /\ S < B ) ) ) |
| 90 |
56 52 87 89
|
mpbir3and |
|- ( ph -> S e. ( U (,) B ) ) |
| 91 |
83 90
|
sseldd |
|- ( ph -> S e. X ) |
| 92 |
|
eldifsn |
|- ( S e. ( X \ { U } ) <-> ( S e. X /\ S =/= U ) ) |
| 93 |
91 53 92
|
sylanbrc |
|- ( ph -> S e. ( X \ { U } ) ) |
| 94 |
77 9 93
|
rspcdva |
|- ( ph -> ( ( S =/= U /\ ( abs ` ( S - U ) ) < T ) -> ( abs ` ( ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) ) ) |
| 95 |
53 66 94
|
mp2and |
|- ( ph -> ( abs ` ( ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) ) |
| 96 |
1 91
|
ffvelcdmd |
|- ( ph -> ( F ` S ) e. RR ) |
| 97 |
4 3
|
sseldd |
|- ( ph -> U e. X ) |
| 98 |
1 97
|
ffvelcdmd |
|- ( ph -> ( F ` U ) e. RR ) |
| 99 |
96 98
|
resubcld |
|- ( ph -> ( ( F ` S ) - ( F ` U ) ) e. RR ) |
| 100 |
56 17
|
resubcld |
|- ( ph -> ( S - U ) e. RR ) |
| 101 |
17 56
|
posdifd |
|- ( ph -> ( U < S <-> 0 < ( S - U ) ) ) |
| 102 |
52 101
|
mpbid |
|- ( ph -> 0 < ( S - U ) ) |
| 103 |
100 102
|
elrpd |
|- ( ph -> ( S - U ) e. RR+ ) |
| 104 |
99 103
|
rerpdivcld |
|- ( ph -> ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) e. RR ) |
| 105 |
104 13 13
|
absdifltd |
|- ( ph -> ( ( abs ` ( ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) <-> ( ( ( ( RR _D F ) ` U ) - ( ( RR _D F ) ` U ) ) < ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) /\ ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) < ( ( ( RR _D F ) ` U ) + ( ( RR _D F ) ` U ) ) ) ) ) |
| 106 |
95 105
|
mpbid |
|- ( ph -> ( ( ( ( RR _D F ) ` U ) - ( ( RR _D F ) ` U ) ) < ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) /\ ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) < ( ( ( RR _D F ) ` U ) + ( ( RR _D F ) ` U ) ) ) ) |
| 107 |
106
|
simpld |
|- ( ph -> ( ( ( RR _D F ) ` U ) - ( ( RR _D F ) ` U ) ) < ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) ) |
| 108 |
15 107
|
eqbrtrrd |
|- ( ph -> 0 < ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) ) |
| 109 |
|
gt0div |
|- ( ( ( ( F ` S ) - ( F ` U ) ) e. RR /\ ( S - U ) e. RR /\ 0 < ( S - U ) ) -> ( 0 < ( ( F ` S ) - ( F ` U ) ) <-> 0 < ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) ) ) |
| 110 |
99 100 102 109
|
syl3anc |
|- ( ph -> ( 0 < ( ( F ` S ) - ( F ` U ) ) <-> 0 < ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) ) ) |
| 111 |
108 110
|
mpbird |
|- ( ph -> 0 < ( ( F ` S ) - ( F ` U ) ) ) |
| 112 |
98 96
|
posdifd |
|- ( ph -> ( ( F ` U ) < ( F ` S ) <-> 0 < ( ( F ` S ) - ( F ` U ) ) ) ) |
| 113 |
111 112
|
mpbird |
|- ( ph -> ( F ` U ) < ( F ` S ) ) |
| 114 |
|
fveq2 |
|- ( y = S -> ( F ` y ) = ( F ` S ) ) |
| 115 |
114
|
breq1d |
|- ( y = S -> ( ( F ` y ) <_ ( F ` U ) <-> ( F ` S ) <_ ( F ` U ) ) ) |
| 116 |
115 6 90
|
rspcdva |
|- ( ph -> ( F ` S ) <_ ( F ` U ) ) |
| 117 |
96 98 116
|
lensymd |
|- ( ph -> -. ( F ` U ) < ( F ` S ) ) |
| 118 |
113 117
|
pm2.65i |
|- -. ph |