| Step |
Hyp |
Ref |
Expression |
| 1 |
|
erdsze.n |
|- ( ph -> N e. NN ) |
| 2 |
|
erdsze.f |
|- ( ph -> F : ( 1 ... N ) -1-1-> RR ) |
| 3 |
|
erdszelem.i |
|- I = ( x e. ( 1 ... N ) |-> sup ( ( # " { y e. ~P ( 1 ... x ) | ( ( F |` y ) Isom < , < ( y , ( F " y ) ) /\ x e. y ) } ) , RR , < ) ) |
| 4 |
|
erdszelem.j |
|- J = ( x e. ( 1 ... N ) |-> sup ( ( # " { y e. ~P ( 1 ... x ) | ( ( F |` y ) Isom < , `' < ( y , ( F " y ) ) /\ x e. y ) } ) , RR , < ) ) |
| 5 |
|
erdszelem.t |
|- T = ( n e. ( 1 ... N ) |-> <. ( I ` n ) , ( J ` n ) >. ) |
| 6 |
|
ltso |
|- < Or RR |
| 7 |
1 2 3 6
|
erdszelem6 |
|- ( ph -> I : ( 1 ... N ) --> NN ) |
| 8 |
7
|
ffvelcdmda |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( I ` n ) e. NN ) |
| 9 |
|
gtso |
|- `' < Or RR |
| 10 |
1 2 4 9
|
erdszelem6 |
|- ( ph -> J : ( 1 ... N ) --> NN ) |
| 11 |
10
|
ffvelcdmda |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( J ` n ) e. NN ) |
| 12 |
|
opelxpi |
|- ( ( ( I ` n ) e. NN /\ ( J ` n ) e. NN ) -> <. ( I ` n ) , ( J ` n ) >. e. ( NN X. NN ) ) |
| 13 |
8 11 12
|
syl2anc |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> <. ( I ` n ) , ( J ` n ) >. e. ( NN X. NN ) ) |
| 14 |
13 5
|
fmptd |
|- ( ph -> T : ( 1 ... N ) --> ( NN X. NN ) ) |
| 15 |
|
fveq2 |
|- ( a = z -> ( T ` a ) = ( T ` z ) ) |
| 16 |
|
fveq2 |
|- ( b = w -> ( T ` b ) = ( T ` w ) ) |
| 17 |
15 16
|
eqeqan12d |
|- ( ( a = z /\ b = w ) -> ( ( T ` a ) = ( T ` b ) <-> ( T ` z ) = ( T ` w ) ) ) |
| 18 |
|
eqeq12 |
|- ( ( a = z /\ b = w ) -> ( a = b <-> z = w ) ) |
| 19 |
17 18
|
imbi12d |
|- ( ( a = z /\ b = w ) -> ( ( ( T ` a ) = ( T ` b ) -> a = b ) <-> ( ( T ` z ) = ( T ` w ) -> z = w ) ) ) |
| 20 |
|
fveq2 |
|- ( a = w -> ( T ` a ) = ( T ` w ) ) |
| 21 |
|
fveq2 |
|- ( b = z -> ( T ` b ) = ( T ` z ) ) |
| 22 |
20 21
|
eqeqan12d |
|- ( ( a = w /\ b = z ) -> ( ( T ` a ) = ( T ` b ) <-> ( T ` w ) = ( T ` z ) ) ) |
| 23 |
|
eqcom |
|- ( ( T ` w ) = ( T ` z ) <-> ( T ` z ) = ( T ` w ) ) |
| 24 |
22 23
|
bitrdi |
|- ( ( a = w /\ b = z ) -> ( ( T ` a ) = ( T ` b ) <-> ( T ` z ) = ( T ` w ) ) ) |
| 25 |
|
eqeq12 |
|- ( ( a = w /\ b = z ) -> ( a = b <-> w = z ) ) |
| 26 |
|
eqcom |
|- ( w = z <-> z = w ) |
| 27 |
25 26
|
bitrdi |
|- ( ( a = w /\ b = z ) -> ( a = b <-> z = w ) ) |
| 28 |
24 27
|
imbi12d |
|- ( ( a = w /\ b = z ) -> ( ( ( T ` a ) = ( T ` b ) -> a = b ) <-> ( ( T ` z ) = ( T ` w ) -> z = w ) ) ) |
| 29 |
|
elfzelz |
|- ( z e. ( 1 ... N ) -> z e. ZZ ) |
| 30 |
29
|
zred |
|- ( z e. ( 1 ... N ) -> z e. RR ) |
| 31 |
30
|
ssriv |
|- ( 1 ... N ) C_ RR |
| 32 |
31
|
a1i |
|- ( ph -> ( 1 ... N ) C_ RR ) |
| 33 |
|
biidd |
|- ( ( ph /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) ) ) -> ( ( ( T ` z ) = ( T ` w ) -> z = w ) <-> ( ( T ` z ) = ( T ` w ) -> z = w ) ) ) |
| 34 |
|
simpr1 |
|- ( ( ph /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) /\ z <_ w ) ) -> z e. ( 1 ... N ) ) |
| 35 |
|
fveq2 |
|- ( n = z -> ( I ` n ) = ( I ` z ) ) |
| 36 |
|
fveq2 |
|- ( n = z -> ( J ` n ) = ( J ` z ) ) |
| 37 |
35 36
|
opeq12d |
|- ( n = z -> <. ( I ` n ) , ( J ` n ) >. = <. ( I ` z ) , ( J ` z ) >. ) |
| 38 |
|
opex |
|- <. ( I ` z ) , ( J ` z ) >. e. _V |
| 39 |
37 5 38
|
fvmpt |
|- ( z e. ( 1 ... N ) -> ( T ` z ) = <. ( I ` z ) , ( J ` z ) >. ) |
| 40 |
34 39
|
syl |
|- ( ( ph /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) /\ z <_ w ) ) -> ( T ` z ) = <. ( I ` z ) , ( J ` z ) >. ) |
| 41 |
|
simpr2 |
|- ( ( ph /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) /\ z <_ w ) ) -> w e. ( 1 ... N ) ) |
| 42 |
|
fveq2 |
|- ( n = w -> ( I ` n ) = ( I ` w ) ) |
| 43 |
|
fveq2 |
|- ( n = w -> ( J ` n ) = ( J ` w ) ) |
| 44 |
42 43
|
opeq12d |
|- ( n = w -> <. ( I ` n ) , ( J ` n ) >. = <. ( I ` w ) , ( J ` w ) >. ) |
| 45 |
|
opex |
|- <. ( I ` w ) , ( J ` w ) >. e. _V |
| 46 |
44 5 45
|
fvmpt |
|- ( w e. ( 1 ... N ) -> ( T ` w ) = <. ( I ` w ) , ( J ` w ) >. ) |
| 47 |
41 46
|
syl |
|- ( ( ph /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) /\ z <_ w ) ) -> ( T ` w ) = <. ( I ` w ) , ( J ` w ) >. ) |
| 48 |
40 47
|
eqeq12d |
|- ( ( ph /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) /\ z <_ w ) ) -> ( ( T ` z ) = ( T ` w ) <-> <. ( I ` z ) , ( J ` z ) >. = <. ( I ` w ) , ( J ` w ) >. ) ) |
| 49 |
|
fvex |
|- ( I ` z ) e. _V |
| 50 |
|
fvex |
|- ( J ` z ) e. _V |
| 51 |
49 50
|
opth |
|- ( <. ( I ` z ) , ( J ` z ) >. = <. ( I ` w ) , ( J ` w ) >. <-> ( ( I ` z ) = ( I ` w ) /\ ( J ` z ) = ( J ` w ) ) ) |
| 52 |
34 30
|
syl |
|- ( ( ph /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) /\ z <_ w ) ) -> z e. RR ) |
| 53 |
31 41
|
sselid |
|- ( ( ph /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) /\ z <_ w ) ) -> w e. RR ) |
| 54 |
|
simpr3 |
|- ( ( ph /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) /\ z <_ w ) ) -> z <_ w ) |
| 55 |
52 53 54
|
leltned |
|- ( ( ph /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) /\ z <_ w ) ) -> ( z < w <-> w =/= z ) ) |
| 56 |
2
|
adantr |
|- ( ( ph /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) /\ z <_ w ) ) -> F : ( 1 ... N ) -1-1-> RR ) |
| 57 |
|
f1fveq |
|- ( ( F : ( 1 ... N ) -1-1-> RR /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) ) ) -> ( ( F ` z ) = ( F ` w ) <-> z = w ) ) |
| 58 |
56 34 41 57
|
syl12anc |
|- ( ( ph /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) /\ z <_ w ) ) -> ( ( F ` z ) = ( F ` w ) <-> z = w ) ) |
| 59 |
58 26
|
bitr4di |
|- ( ( ph /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) /\ z <_ w ) ) -> ( ( F ` z ) = ( F ` w ) <-> w = z ) ) |
| 60 |
59
|
necon3bid |
|- ( ( ph /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) /\ z <_ w ) ) -> ( ( F ` z ) =/= ( F ` w ) <-> w =/= z ) ) |
| 61 |
55 60
|
bitr4d |
|- ( ( ph /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) /\ z <_ w ) ) -> ( z < w <-> ( F ` z ) =/= ( F ` w ) ) ) |
| 62 |
61
|
biimpa |
|- ( ( ( ph /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) /\ z <_ w ) ) /\ z < w ) -> ( F ` z ) =/= ( F ` w ) ) |
| 63 |
|
f1f |
|- ( F : ( 1 ... N ) -1-1-> RR -> F : ( 1 ... N ) --> RR ) |
| 64 |
2 63
|
syl |
|- ( ph -> F : ( 1 ... N ) --> RR ) |
| 65 |
64
|
ad2antrr |
|- ( ( ( ph /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) /\ z <_ w ) ) /\ z < w ) -> F : ( 1 ... N ) --> RR ) |
| 66 |
34
|
adantr |
|- ( ( ( ph /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) /\ z <_ w ) ) /\ z < w ) -> z e. ( 1 ... N ) ) |
| 67 |
65 66
|
ffvelcdmd |
|- ( ( ( ph /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) /\ z <_ w ) ) /\ z < w ) -> ( F ` z ) e. RR ) |
| 68 |
41
|
adantr |
|- ( ( ( ph /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) /\ z <_ w ) ) /\ z < w ) -> w e. ( 1 ... N ) ) |
| 69 |
65 68
|
ffvelcdmd |
|- ( ( ( ph /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) /\ z <_ w ) ) /\ z < w ) -> ( F ` w ) e. RR ) |
| 70 |
67 69
|
lttri2d |
|- ( ( ( ph /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) /\ z <_ w ) ) /\ z < w ) -> ( ( F ` z ) =/= ( F ` w ) <-> ( ( F ` z ) < ( F ` w ) \/ ( F ` w ) < ( F ` z ) ) ) ) |
| 71 |
62 70
|
mpbid |
|- ( ( ( ph /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) /\ z <_ w ) ) /\ z < w ) -> ( ( F ` z ) < ( F ` w ) \/ ( F ` w ) < ( F ` z ) ) ) |
| 72 |
1
|
ad2antrr |
|- ( ( ( ph /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) /\ z <_ w ) ) /\ z < w ) -> N e. NN ) |
| 73 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) /\ z <_ w ) ) /\ z < w ) -> F : ( 1 ... N ) -1-1-> RR ) |
| 74 |
|
simpr |
|- ( ( ( ph /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) /\ z <_ w ) ) /\ z < w ) -> z < w ) |
| 75 |
72 73 3 6 66 68 74
|
erdszelem8 |
|- ( ( ( ph /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) /\ z <_ w ) ) /\ z < w ) -> ( ( I ` z ) = ( I ` w ) -> -. ( F ` z ) < ( F ` w ) ) ) |
| 76 |
72 73 4 9 66 68 74
|
erdszelem8 |
|- ( ( ( ph /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) /\ z <_ w ) ) /\ z < w ) -> ( ( J ` z ) = ( J ` w ) -> -. ( F ` z ) `' < ( F ` w ) ) ) |
| 77 |
75 76
|
anim12d |
|- ( ( ( ph /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) /\ z <_ w ) ) /\ z < w ) -> ( ( ( I ` z ) = ( I ` w ) /\ ( J ` z ) = ( J ` w ) ) -> ( -. ( F ` z ) < ( F ` w ) /\ -. ( F ` z ) `' < ( F ` w ) ) ) ) |
| 78 |
|
ioran |
|- ( -. ( ( F ` z ) < ( F ` w ) \/ ( F ` w ) < ( F ` z ) ) <-> ( -. ( F ` z ) < ( F ` w ) /\ -. ( F ` w ) < ( F ` z ) ) ) |
| 79 |
|
fvex |
|- ( F ` z ) e. _V |
| 80 |
|
fvex |
|- ( F ` w ) e. _V |
| 81 |
79 80
|
brcnv |
|- ( ( F ` z ) `' < ( F ` w ) <-> ( F ` w ) < ( F ` z ) ) |
| 82 |
81
|
notbii |
|- ( -. ( F ` z ) `' < ( F ` w ) <-> -. ( F ` w ) < ( F ` z ) ) |
| 83 |
82
|
anbi2i |
|- ( ( -. ( F ` z ) < ( F ` w ) /\ -. ( F ` z ) `' < ( F ` w ) ) <-> ( -. ( F ` z ) < ( F ` w ) /\ -. ( F ` w ) < ( F ` z ) ) ) |
| 84 |
78 83
|
bitr4i |
|- ( -. ( ( F ` z ) < ( F ` w ) \/ ( F ` w ) < ( F ` z ) ) <-> ( -. ( F ` z ) < ( F ` w ) /\ -. ( F ` z ) `' < ( F ` w ) ) ) |
| 85 |
77 84
|
imbitrrdi |
|- ( ( ( ph /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) /\ z <_ w ) ) /\ z < w ) -> ( ( ( I ` z ) = ( I ` w ) /\ ( J ` z ) = ( J ` w ) ) -> -. ( ( F ` z ) < ( F ` w ) \/ ( F ` w ) < ( F ` z ) ) ) ) |
| 86 |
71 85
|
mt2d |
|- ( ( ( ph /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) /\ z <_ w ) ) /\ z < w ) -> -. ( ( I ` z ) = ( I ` w ) /\ ( J ` z ) = ( J ` w ) ) ) |
| 87 |
86
|
ex |
|- ( ( ph /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) /\ z <_ w ) ) -> ( z < w -> -. ( ( I ` z ) = ( I ` w ) /\ ( J ` z ) = ( J ` w ) ) ) ) |
| 88 |
55 87
|
sylbird |
|- ( ( ph /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) /\ z <_ w ) ) -> ( w =/= z -> -. ( ( I ` z ) = ( I ` w ) /\ ( J ` z ) = ( J ` w ) ) ) ) |
| 89 |
88
|
necon4ad |
|- ( ( ph /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) /\ z <_ w ) ) -> ( ( ( I ` z ) = ( I ` w ) /\ ( J ` z ) = ( J ` w ) ) -> w = z ) ) |
| 90 |
51 89
|
biimtrid |
|- ( ( ph /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) /\ z <_ w ) ) -> ( <. ( I ` z ) , ( J ` z ) >. = <. ( I ` w ) , ( J ` w ) >. -> w = z ) ) |
| 91 |
48 90
|
sylbid |
|- ( ( ph /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) /\ z <_ w ) ) -> ( ( T ` z ) = ( T ` w ) -> w = z ) ) |
| 92 |
91 26
|
imbitrdi |
|- ( ( ph /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) /\ z <_ w ) ) -> ( ( T ` z ) = ( T ` w ) -> z = w ) ) |
| 93 |
19 28 32 33 92
|
wlogle |
|- ( ( ph /\ ( z e. ( 1 ... N ) /\ w e. ( 1 ... N ) ) ) -> ( ( T ` z ) = ( T ` w ) -> z = w ) ) |
| 94 |
93
|
ralrimivva |
|- ( ph -> A. z e. ( 1 ... N ) A. w e. ( 1 ... N ) ( ( T ` z ) = ( T ` w ) -> z = w ) ) |
| 95 |
|
dff13 |
|- ( T : ( 1 ... N ) -1-1-> ( NN X. NN ) <-> ( T : ( 1 ... N ) --> ( NN X. NN ) /\ A. z e. ( 1 ... N ) A. w e. ( 1 ... N ) ( ( T ` z ) = ( T ` w ) -> z = w ) ) ) |
| 96 |
14 94 95
|
sylanbrc |
|- ( ph -> T : ( 1 ... N ) -1-1-> ( NN X. NN ) ) |