Metamath Proof Explorer


Theorem erdszelem9

Description: Lemma for erdsze . (Contributed by Mario Carneiro, 22-Jan-2015)

Ref Expression
Hypotheses erdsze.n φN
erdsze.f φF:1N1-1
erdszelem.i I=x1Nsup.y𝒫1x|FyIsom<,<yFyxy<
erdszelem.j J=x1Nsup.y𝒫1x|FyIsom<,<-1yFyxy<
erdszelem.t T=n1NInJn
Assertion erdszelem9 φT:1N1-1×

Proof

Step Hyp Ref Expression
1 erdsze.n φN
2 erdsze.f φF:1N1-1
3 erdszelem.i I=x1Nsup.y𝒫1x|FyIsom<,<yFyxy<
4 erdszelem.j J=x1Nsup.y𝒫1x|FyIsom<,<-1yFyxy<
5 erdszelem.t T=n1NInJn
6 ltso <Or
7 1 2 3 6 erdszelem6 φI:1N
8 7 ffvelcdmda φn1NIn
9 gtso <-1Or
10 1 2 4 9 erdszelem6 φJ:1N
11 10 ffvelcdmda φn1NJn
12 opelxpi InJnInJn×
13 8 11 12 syl2anc φn1NInJn×
14 13 5 fmptd φT:1N×
15 fveq2 a=zTa=Tz
16 fveq2 b=wTb=Tw
17 15 16 eqeqan12d a=zb=wTa=TbTz=Tw
18 eqeq12 a=zb=wa=bz=w
19 17 18 imbi12d a=zb=wTa=Tba=bTz=Twz=w
20 fveq2 a=wTa=Tw
21 fveq2 b=zTb=Tz
22 20 21 eqeqan12d a=wb=zTa=TbTw=Tz
23 eqcom Tw=TzTz=Tw
24 22 23 bitrdi a=wb=zTa=TbTz=Tw
25 eqeq12 a=wb=za=bw=z
26 eqcom w=zz=w
27 25 26 bitrdi a=wb=za=bz=w
28 24 27 imbi12d a=wb=zTa=Tba=bTz=Twz=w
29 elfzelz z1Nz
30 29 zred z1Nz
31 30 ssriv 1N
32 31 a1i φ1N
33 biidd φz1Nw1NTz=Twz=wTz=Twz=w
34 simpr1 φz1Nw1Nzwz1N
35 fveq2 n=zIn=Iz
36 fveq2 n=zJn=Jz
37 35 36 opeq12d n=zInJn=IzJz
38 opex IzJzV
39 37 5 38 fvmpt z1NTz=IzJz
40 34 39 syl φz1Nw1NzwTz=IzJz
41 simpr2 φz1Nw1Nzww1N
42 fveq2 n=wIn=Iw
43 fveq2 n=wJn=Jw
44 42 43 opeq12d n=wInJn=IwJw
45 opex IwJwV
46 44 5 45 fvmpt w1NTw=IwJw
47 41 46 syl φz1Nw1NzwTw=IwJw
48 40 47 eqeq12d φz1Nw1NzwTz=TwIzJz=IwJw
49 fvex IzV
50 fvex JzV
51 49 50 opth IzJz=IwJwIz=IwJz=Jw
52 34 30 syl φz1Nw1Nzwz
53 31 41 sselid φz1Nw1Nzww
54 simpr3 φz1Nw1Nzwzw
55 52 53 54 leltned φz1Nw1Nzwz<wwz
56 2 adantr φz1Nw1NzwF:1N1-1
57 f1fveq F:1N1-1z1Nw1NFz=Fwz=w
58 56 34 41 57 syl12anc φz1Nw1NzwFz=Fwz=w
59 58 26 bitr4di φz1Nw1NzwFz=Fww=z
60 59 necon3bid φz1Nw1NzwFzFwwz
61 55 60 bitr4d φz1Nw1Nzwz<wFzFw
62 61 biimpa φz1Nw1Nzwz<wFzFw
63 f1f F:1N1-1F:1N
64 2 63 syl φF:1N
65 64 ad2antrr φz1Nw1Nzwz<wF:1N
66 34 adantr φz1Nw1Nzwz<wz1N
67 65 66 ffvelcdmd φz1Nw1Nzwz<wFz
68 41 adantr φz1Nw1Nzwz<ww1N
69 65 68 ffvelcdmd φz1Nw1Nzwz<wFw
70 67 69 lttri2d φz1Nw1Nzwz<wFzFwFz<FwFw<Fz
71 62 70 mpbid φz1Nw1Nzwz<wFz<FwFw<Fz
72 1 ad2antrr φz1Nw1Nzwz<wN
73 2 ad2antrr φz1Nw1Nzwz<wF:1N1-1
74 simpr φz1Nw1Nzwz<wz<w
75 72 73 3 6 66 68 74 erdszelem8 φz1Nw1Nzwz<wIz=Iw¬Fz<Fw
76 72 73 4 9 66 68 74 erdszelem8 φz1Nw1Nzwz<wJz=Jw¬Fz<-1Fw
77 75 76 anim12d φz1Nw1Nzwz<wIz=IwJz=Jw¬Fz<Fw¬Fz<-1Fw
78 ioran ¬Fz<FwFw<Fz¬Fz<Fw¬Fw<Fz
79 fvex FzV
80 fvex FwV
81 79 80 brcnv Fz<-1FwFw<Fz
82 81 notbii ¬Fz<-1Fw¬Fw<Fz
83 82 anbi2i ¬Fz<Fw¬Fz<-1Fw¬Fz<Fw¬Fw<Fz
84 78 83 bitr4i ¬Fz<FwFw<Fz¬Fz<Fw¬Fz<-1Fw
85 77 84 syl6ibr φz1Nw1Nzwz<wIz=IwJz=Jw¬Fz<FwFw<Fz
86 71 85 mt2d φz1Nw1Nzwz<w¬Iz=IwJz=Jw
87 86 ex φz1Nw1Nzwz<w¬Iz=IwJz=Jw
88 55 87 sylbird φz1Nw1Nzwwz¬Iz=IwJz=Jw
89 88 necon4ad φz1Nw1NzwIz=IwJz=Jww=z
90 51 89 biimtrid φz1Nw1NzwIzJz=IwJww=z
91 48 90 sylbid φz1Nw1NzwTz=Tww=z
92 91 26 imbitrdi φz1Nw1NzwTz=Twz=w
93 19 28 32 33 92 wlogle φz1Nw1NTz=Twz=w
94 93 ralrimivva φz1Nw1NTz=Twz=w
95 dff13 T:1N1-1×T:1N×z1Nw1NTz=Twz=w
96 14 94 95 sylanbrc φT:1N1-1×