| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0z |
|- 0 e. ZZ |
| 2 |
|
eltpg |
|- ( 0 e. ZZ -> ( 0 e. { A , B , C } <-> ( 0 = A \/ 0 = B \/ 0 = C ) ) ) |
| 3 |
1 2
|
ax-mp |
|- ( 0 e. { A , B , C } <-> ( 0 = A \/ 0 = B \/ 0 = C ) ) |
| 4 |
3
|
biimpri |
|- ( ( 0 = A \/ 0 = B \/ 0 = C ) -> 0 e. { A , B , C } ) |
| 5 |
|
tpssi |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> { A , B , C } C_ ZZ ) |
| 6 |
4 5
|
anim12ci |
|- ( ( ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( { A , B , C } C_ ZZ /\ 0 e. { A , B , C } ) ) |
| 7 |
|
lcmf0val |
|- ( ( { A , B , C } C_ ZZ /\ 0 e. { A , B , C } ) -> ( _lcm ` { A , B , C } ) = 0 ) |
| 8 |
6 7
|
syl |
|- ( ( ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( _lcm ` { A , B , C } ) = 0 ) |
| 9 |
|
0zd |
|- ( C e. ZZ -> 0 e. ZZ ) |
| 10 |
|
lcmcom |
|- ( ( 0 e. ZZ /\ C e. ZZ ) -> ( 0 lcm C ) = ( C lcm 0 ) ) |
| 11 |
9 10
|
mpancom |
|- ( C e. ZZ -> ( 0 lcm C ) = ( C lcm 0 ) ) |
| 12 |
|
lcm0val |
|- ( C e. ZZ -> ( C lcm 0 ) = 0 ) |
| 13 |
11 12
|
eqtrd |
|- ( C e. ZZ -> ( 0 lcm C ) = 0 ) |
| 14 |
13
|
eqcomd |
|- ( C e. ZZ -> 0 = ( 0 lcm C ) ) |
| 15 |
14
|
3ad2ant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> 0 = ( 0 lcm C ) ) |
| 16 |
15
|
adantl |
|- ( ( 0 = A /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> 0 = ( 0 lcm C ) ) |
| 17 |
|
0zd |
|- ( B e. ZZ -> 0 e. ZZ ) |
| 18 |
|
lcmcom |
|- ( ( 0 e. ZZ /\ B e. ZZ ) -> ( 0 lcm B ) = ( B lcm 0 ) ) |
| 19 |
17 18
|
mpancom |
|- ( B e. ZZ -> ( 0 lcm B ) = ( B lcm 0 ) ) |
| 20 |
|
lcm0val |
|- ( B e. ZZ -> ( B lcm 0 ) = 0 ) |
| 21 |
19 20
|
eqtrd |
|- ( B e. ZZ -> ( 0 lcm B ) = 0 ) |
| 22 |
21
|
eqcomd |
|- ( B e. ZZ -> 0 = ( 0 lcm B ) ) |
| 23 |
22
|
3ad2ant2 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> 0 = ( 0 lcm B ) ) |
| 24 |
23
|
adantl |
|- ( ( 0 = A /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> 0 = ( 0 lcm B ) ) |
| 25 |
24
|
oveq1d |
|- ( ( 0 = A /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( 0 lcm C ) = ( ( 0 lcm B ) lcm C ) ) |
| 26 |
|
oveq1 |
|- ( 0 = A -> ( 0 lcm B ) = ( A lcm B ) ) |
| 27 |
26
|
oveq1d |
|- ( 0 = A -> ( ( 0 lcm B ) lcm C ) = ( ( A lcm B ) lcm C ) ) |
| 28 |
27
|
adantr |
|- ( ( 0 = A /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( 0 lcm B ) lcm C ) = ( ( A lcm B ) lcm C ) ) |
| 29 |
16 25 28
|
3eqtrd |
|- ( ( 0 = A /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> 0 = ( ( A lcm B ) lcm C ) ) |
| 30 |
|
lcm0val |
|- ( A e. ZZ -> ( A lcm 0 ) = 0 ) |
| 31 |
30
|
eqcomd |
|- ( A e. ZZ -> 0 = ( A lcm 0 ) ) |
| 32 |
31
|
3ad2ant1 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> 0 = ( A lcm 0 ) ) |
| 33 |
32
|
adantl |
|- ( ( 0 = B /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> 0 = ( A lcm 0 ) ) |
| 34 |
33
|
oveq1d |
|- ( ( 0 = B /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( 0 lcm C ) = ( ( A lcm 0 ) lcm C ) ) |
| 35 |
13
|
3ad2ant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( 0 lcm C ) = 0 ) |
| 36 |
35
|
adantl |
|- ( ( 0 = B /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( 0 lcm C ) = 0 ) |
| 37 |
|
oveq2 |
|- ( 0 = B -> ( A lcm 0 ) = ( A lcm B ) ) |
| 38 |
37
|
adantr |
|- ( ( 0 = B /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( A lcm 0 ) = ( A lcm B ) ) |
| 39 |
38
|
oveq1d |
|- ( ( 0 = B /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( A lcm 0 ) lcm C ) = ( ( A lcm B ) lcm C ) ) |
| 40 |
34 36 39
|
3eqtr3d |
|- ( ( 0 = B /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> 0 = ( ( A lcm B ) lcm C ) ) |
| 41 |
|
lcmcl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A lcm B ) e. NN0 ) |
| 42 |
41
|
nn0zd |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A lcm B ) e. ZZ ) |
| 43 |
|
lcm0val |
|- ( ( A lcm B ) e. ZZ -> ( ( A lcm B ) lcm 0 ) = 0 ) |
| 44 |
43
|
eqcomd |
|- ( ( A lcm B ) e. ZZ -> 0 = ( ( A lcm B ) lcm 0 ) ) |
| 45 |
42 44
|
syl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> 0 = ( ( A lcm B ) lcm 0 ) ) |
| 46 |
45
|
3adant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> 0 = ( ( A lcm B ) lcm 0 ) ) |
| 47 |
|
oveq2 |
|- ( 0 = C -> ( ( A lcm B ) lcm 0 ) = ( ( A lcm B ) lcm C ) ) |
| 48 |
46 47
|
sylan9eqr |
|- ( ( 0 = C /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> 0 = ( ( A lcm B ) lcm C ) ) |
| 49 |
29 40 48
|
3jaoian |
|- ( ( ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> 0 = ( ( A lcm B ) lcm C ) ) |
| 50 |
8 49
|
eqtrd |
|- ( ( ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( _lcm ` { A , B , C } ) = ( ( A lcm B ) lcm C ) ) |
| 51 |
42
|
3adant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A lcm B ) e. ZZ ) |
| 52 |
|
simp3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> C e. ZZ ) |
| 53 |
51 52
|
jca |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( ( A lcm B ) e. ZZ /\ C e. ZZ ) ) |
| 54 |
53
|
adantl |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( A lcm B ) e. ZZ /\ C e. ZZ ) ) |
| 55 |
|
dvdslcm |
|- ( ( ( A lcm B ) e. ZZ /\ C e. ZZ ) -> ( ( A lcm B ) || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) ) |
| 56 |
54 55
|
syl |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( A lcm B ) || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) ) |
| 57 |
|
dvdslcm |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A || ( A lcm B ) /\ B || ( A lcm B ) ) ) |
| 58 |
57
|
3adant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A || ( A lcm B ) /\ B || ( A lcm B ) ) ) |
| 59 |
|
simp1 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> A e. ZZ ) |
| 60 |
|
lcmcl |
|- ( ( ( A lcm B ) e. ZZ /\ C e. ZZ ) -> ( ( A lcm B ) lcm C ) e. NN0 ) |
| 61 |
53 60
|
syl |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( ( A lcm B ) lcm C ) e. NN0 ) |
| 62 |
61
|
nn0zd |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( ( A lcm B ) lcm C ) e. ZZ ) |
| 63 |
59 51 62
|
3jca |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A e. ZZ /\ ( A lcm B ) e. ZZ /\ ( ( A lcm B ) lcm C ) e. ZZ ) ) |
| 64 |
|
dvdstr |
|- ( ( A e. ZZ /\ ( A lcm B ) e. ZZ /\ ( ( A lcm B ) lcm C ) e. ZZ ) -> ( ( A || ( A lcm B ) /\ ( A lcm B ) || ( ( A lcm B ) lcm C ) ) -> A || ( ( A lcm B ) lcm C ) ) ) |
| 65 |
63 64
|
syl |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( ( A || ( A lcm B ) /\ ( A lcm B ) || ( ( A lcm B ) lcm C ) ) -> A || ( ( A lcm B ) lcm C ) ) ) |
| 66 |
65
|
expd |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A || ( A lcm B ) -> ( ( A lcm B ) || ( ( A lcm B ) lcm C ) -> A || ( ( A lcm B ) lcm C ) ) ) ) |
| 67 |
66
|
com12 |
|- ( A || ( A lcm B ) -> ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( ( A lcm B ) || ( ( A lcm B ) lcm C ) -> A || ( ( A lcm B ) lcm C ) ) ) ) |
| 68 |
67
|
adantr |
|- ( ( A || ( A lcm B ) /\ B || ( A lcm B ) ) -> ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( ( A lcm B ) || ( ( A lcm B ) lcm C ) -> A || ( ( A lcm B ) lcm C ) ) ) ) |
| 69 |
58 68
|
mpcom |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( ( A lcm B ) || ( ( A lcm B ) lcm C ) -> A || ( ( A lcm B ) lcm C ) ) ) |
| 70 |
69
|
adantl |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( A lcm B ) || ( ( A lcm B ) lcm C ) -> A || ( ( A lcm B ) lcm C ) ) ) |
| 71 |
70
|
com12 |
|- ( ( A lcm B ) || ( ( A lcm B ) lcm C ) -> ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> A || ( ( A lcm B ) lcm C ) ) ) |
| 72 |
71
|
adantr |
|- ( ( ( A lcm B ) || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) -> ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> A || ( ( A lcm B ) lcm C ) ) ) |
| 73 |
72
|
impcom |
|- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ ( ( A lcm B ) || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) ) -> A || ( ( A lcm B ) lcm C ) ) |
| 74 |
|
simpr |
|- ( ( A || ( A lcm B ) /\ B || ( A lcm B ) ) -> B || ( A lcm B ) ) |
| 75 |
57 74
|
syl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> B || ( A lcm B ) ) |
| 76 |
75
|
3adant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> B || ( A lcm B ) ) |
| 77 |
76
|
adantl |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> B || ( A lcm B ) ) |
| 78 |
|
simp2 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> B e. ZZ ) |
| 79 |
78 51 62
|
3jca |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( B e. ZZ /\ ( A lcm B ) e. ZZ /\ ( ( A lcm B ) lcm C ) e. ZZ ) ) |
| 80 |
79
|
adantl |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( B e. ZZ /\ ( A lcm B ) e. ZZ /\ ( ( A lcm B ) lcm C ) e. ZZ ) ) |
| 81 |
|
dvdstr |
|- ( ( B e. ZZ /\ ( A lcm B ) e. ZZ /\ ( ( A lcm B ) lcm C ) e. ZZ ) -> ( ( B || ( A lcm B ) /\ ( A lcm B ) || ( ( A lcm B ) lcm C ) ) -> B || ( ( A lcm B ) lcm C ) ) ) |
| 82 |
80 81
|
syl |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( B || ( A lcm B ) /\ ( A lcm B ) || ( ( A lcm B ) lcm C ) ) -> B || ( ( A lcm B ) lcm C ) ) ) |
| 83 |
77 82
|
mpand |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( A lcm B ) || ( ( A lcm B ) lcm C ) -> B || ( ( A lcm B ) lcm C ) ) ) |
| 84 |
83
|
com12 |
|- ( ( A lcm B ) || ( ( A lcm B ) lcm C ) -> ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> B || ( ( A lcm B ) lcm C ) ) ) |
| 85 |
84
|
adantr |
|- ( ( ( A lcm B ) || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) -> ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> B || ( ( A lcm B ) lcm C ) ) ) |
| 86 |
85
|
impcom |
|- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ ( ( A lcm B ) || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) ) -> B || ( ( A lcm B ) lcm C ) ) |
| 87 |
|
simpr |
|- ( ( ( A lcm B ) || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) -> C || ( ( A lcm B ) lcm C ) ) |
| 88 |
87
|
adantl |
|- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ ( ( A lcm B ) || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) ) -> C || ( ( A lcm B ) lcm C ) ) |
| 89 |
73 86 88
|
3jca |
|- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ ( ( A lcm B ) || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) ) -> ( A || ( ( A lcm B ) lcm C ) /\ B || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) ) |
| 90 |
56 89
|
mpdan |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( A || ( ( A lcm B ) lcm C ) /\ B || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) ) |
| 91 |
|
breq1 |
|- ( m = A -> ( m || ( ( A lcm B ) lcm C ) <-> A || ( ( A lcm B ) lcm C ) ) ) |
| 92 |
|
breq1 |
|- ( m = B -> ( m || ( ( A lcm B ) lcm C ) <-> B || ( ( A lcm B ) lcm C ) ) ) |
| 93 |
|
breq1 |
|- ( m = C -> ( m || ( ( A lcm B ) lcm C ) <-> C || ( ( A lcm B ) lcm C ) ) ) |
| 94 |
91 92 93
|
raltpg |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A. m e. { A , B , C } m || ( ( A lcm B ) lcm C ) <-> ( A || ( ( A lcm B ) lcm C ) /\ B || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) ) ) |
| 95 |
94
|
adantl |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( A. m e. { A , B , C } m || ( ( A lcm B ) lcm C ) <-> ( A || ( ( A lcm B ) lcm C ) /\ B || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) ) ) |
| 96 |
90 95
|
mpbird |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> A. m e. { A , B , C } m || ( ( A lcm B ) lcm C ) ) |
| 97 |
|
breq1 |
|- ( m = A -> ( m || k <-> A || k ) ) |
| 98 |
|
breq1 |
|- ( m = B -> ( m || k <-> B || k ) ) |
| 99 |
|
breq1 |
|- ( m = C -> ( m || k <-> C || k ) ) |
| 100 |
97 98 99
|
raltpg |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A. m e. { A , B , C } m || k <-> ( A || k /\ B || k /\ C || k ) ) ) |
| 101 |
100
|
ad2antlr |
|- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> ( A. m e. { A , B , C } m || k <-> ( A || k /\ B || k /\ C || k ) ) ) |
| 102 |
|
simpr |
|- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> k e. NN ) |
| 103 |
51
|
ad2antlr |
|- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> ( A lcm B ) e. ZZ ) |
| 104 |
52
|
ad2antlr |
|- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> C e. ZZ ) |
| 105 |
102 103 104
|
3jca |
|- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> ( k e. NN /\ ( A lcm B ) e. ZZ /\ C e. ZZ ) ) |
| 106 |
105
|
adantr |
|- ( ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) /\ ( A || k /\ B || k /\ C || k ) ) -> ( k e. NN /\ ( A lcm B ) e. ZZ /\ C e. ZZ ) ) |
| 107 |
|
3ioran |
|- ( -. ( 0 = A \/ 0 = B \/ 0 = C ) <-> ( -. 0 = A /\ -. 0 = B /\ -. 0 = C ) ) |
| 108 |
|
eqcom |
|- ( 0 = A <-> A = 0 ) |
| 109 |
108
|
notbii |
|- ( -. 0 = A <-> -. A = 0 ) |
| 110 |
|
eqcom |
|- ( 0 = B <-> B = 0 ) |
| 111 |
110
|
notbii |
|- ( -. 0 = B <-> -. B = 0 ) |
| 112 |
109 111
|
anbi12i |
|- ( ( -. 0 = A /\ -. 0 = B ) <-> ( -. A = 0 /\ -. B = 0 ) ) |
| 113 |
112
|
biimpi |
|- ( ( -. 0 = A /\ -. 0 = B ) -> ( -. A = 0 /\ -. B = 0 ) ) |
| 114 |
|
ioran |
|- ( -. ( A = 0 \/ B = 0 ) <-> ( -. A = 0 /\ -. B = 0 ) ) |
| 115 |
113 114
|
sylibr |
|- ( ( -. 0 = A /\ -. 0 = B ) -> -. ( A = 0 \/ B = 0 ) ) |
| 116 |
115
|
3adant3 |
|- ( ( -. 0 = A /\ -. 0 = B /\ -. 0 = C ) -> -. ( A = 0 \/ B = 0 ) ) |
| 117 |
107 116
|
sylbi |
|- ( -. ( 0 = A \/ 0 = B \/ 0 = C ) -> -. ( A = 0 \/ B = 0 ) ) |
| 118 |
|
id |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A e. ZZ /\ B e. ZZ ) ) |
| 119 |
118
|
3adant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A e. ZZ /\ B e. ZZ ) ) |
| 120 |
117 119
|
anim12ci |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 \/ B = 0 ) ) ) |
| 121 |
|
lcmn0cl |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( A lcm B ) e. NN ) |
| 122 |
120 121
|
syl |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( A lcm B ) e. NN ) |
| 123 |
|
nnne0 |
|- ( ( A lcm B ) e. NN -> ( A lcm B ) =/= 0 ) |
| 124 |
123
|
neneqd |
|- ( ( A lcm B ) e. NN -> -. ( A lcm B ) = 0 ) |
| 125 |
122 124
|
syl |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> -. ( A lcm B ) = 0 ) |
| 126 |
|
eqcom |
|- ( 0 = C <-> C = 0 ) |
| 127 |
126
|
notbii |
|- ( -. 0 = C <-> -. C = 0 ) |
| 128 |
127
|
biimpi |
|- ( -. 0 = C -> -. C = 0 ) |
| 129 |
128
|
3ad2ant3 |
|- ( ( -. 0 = A /\ -. 0 = B /\ -. 0 = C ) -> -. C = 0 ) |
| 130 |
107 129
|
sylbi |
|- ( -. ( 0 = A \/ 0 = B \/ 0 = C ) -> -. C = 0 ) |
| 131 |
130
|
adantr |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> -. C = 0 ) |
| 132 |
125 131
|
jca |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( -. ( A lcm B ) = 0 /\ -. C = 0 ) ) |
| 133 |
132
|
adantr |
|- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> ( -. ( A lcm B ) = 0 /\ -. C = 0 ) ) |
| 134 |
133
|
adantr |
|- ( ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) /\ ( A || k /\ B || k /\ C || k ) ) -> ( -. ( A lcm B ) = 0 /\ -. C = 0 ) ) |
| 135 |
|
ioran |
|- ( -. ( ( A lcm B ) = 0 \/ C = 0 ) <-> ( -. ( A lcm B ) = 0 /\ -. C = 0 ) ) |
| 136 |
134 135
|
sylibr |
|- ( ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) /\ ( A || k /\ B || k /\ C || k ) ) -> -. ( ( A lcm B ) = 0 \/ C = 0 ) ) |
| 137 |
119
|
adantl |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( A e. ZZ /\ B e. ZZ ) ) |
| 138 |
|
nnz |
|- ( k e. NN -> k e. ZZ ) |
| 139 |
137 138
|
anim12ci |
|- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> ( k e. ZZ /\ ( A e. ZZ /\ B e. ZZ ) ) ) |
| 140 |
|
3anass |
|- ( ( k e. ZZ /\ A e. ZZ /\ B e. ZZ ) <-> ( k e. ZZ /\ ( A e. ZZ /\ B e. ZZ ) ) ) |
| 141 |
139 140
|
sylibr |
|- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> ( k e. ZZ /\ A e. ZZ /\ B e. ZZ ) ) |
| 142 |
|
lcmdvds |
|- ( ( k e. ZZ /\ A e. ZZ /\ B e. ZZ ) -> ( ( A || k /\ B || k ) -> ( A lcm B ) || k ) ) |
| 143 |
141 142
|
syl |
|- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> ( ( A || k /\ B || k ) -> ( A lcm B ) || k ) ) |
| 144 |
143
|
com12 |
|- ( ( A || k /\ B || k ) -> ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> ( A lcm B ) || k ) ) |
| 145 |
144
|
3adant3 |
|- ( ( A || k /\ B || k /\ C || k ) -> ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> ( A lcm B ) || k ) ) |
| 146 |
145
|
impcom |
|- ( ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) /\ ( A || k /\ B || k /\ C || k ) ) -> ( A lcm B ) || k ) |
| 147 |
|
simp3 |
|- ( ( A || k /\ B || k /\ C || k ) -> C || k ) |
| 148 |
147
|
adantl |
|- ( ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) /\ ( A || k /\ B || k /\ C || k ) ) -> C || k ) |
| 149 |
|
lcmledvds |
|- ( ( ( k e. NN /\ ( A lcm B ) e. ZZ /\ C e. ZZ ) /\ -. ( ( A lcm B ) = 0 \/ C = 0 ) ) -> ( ( ( A lcm B ) || k /\ C || k ) -> ( ( A lcm B ) lcm C ) <_ k ) ) |
| 150 |
149
|
imp |
|- ( ( ( ( k e. NN /\ ( A lcm B ) e. ZZ /\ C e. ZZ ) /\ -. ( ( A lcm B ) = 0 \/ C = 0 ) ) /\ ( ( A lcm B ) || k /\ C || k ) ) -> ( ( A lcm B ) lcm C ) <_ k ) |
| 151 |
106 136 146 148 150
|
syl22anc |
|- ( ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) /\ ( A || k /\ B || k /\ C || k ) ) -> ( ( A lcm B ) lcm C ) <_ k ) |
| 152 |
151
|
ex |
|- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> ( ( A || k /\ B || k /\ C || k ) -> ( ( A lcm B ) lcm C ) <_ k ) ) |
| 153 |
101 152
|
sylbid |
|- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> ( A. m e. { A , B , C } m || k -> ( ( A lcm B ) lcm C ) <_ k ) ) |
| 154 |
153
|
ralrimiva |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> A. k e. NN ( A. m e. { A , B , C } m || k -> ( ( A lcm B ) lcm C ) <_ k ) ) |
| 155 |
96 154
|
jca |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( A. m e. { A , B , C } m || ( ( A lcm B ) lcm C ) /\ A. k e. NN ( A. m e. { A , B , C } m || k -> ( ( A lcm B ) lcm C ) <_ k ) ) ) |
| 156 |
109
|
biimpi |
|- ( -. 0 = A -> -. A = 0 ) |
| 157 |
111
|
biimpi |
|- ( -. 0 = B -> -. B = 0 ) |
| 158 |
156 157
|
anim12i |
|- ( ( -. 0 = A /\ -. 0 = B ) -> ( -. A = 0 /\ -. B = 0 ) ) |
| 159 |
158 114
|
sylibr |
|- ( ( -. 0 = A /\ -. 0 = B ) -> -. ( A = 0 \/ B = 0 ) ) |
| 160 |
159
|
3adant3 |
|- ( ( -. 0 = A /\ -. 0 = B /\ -. 0 = C ) -> -. ( A = 0 \/ B = 0 ) ) |
| 161 |
107 160
|
sylbi |
|- ( -. ( 0 = A \/ 0 = B \/ 0 = C ) -> -. ( A = 0 \/ B = 0 ) ) |
| 162 |
161 119
|
anim12ci |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 \/ B = 0 ) ) ) |
| 163 |
162 121
|
syl |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( A lcm B ) e. NN ) |
| 164 |
163 124
|
syl |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> -. ( A lcm B ) = 0 ) |
| 165 |
164 131
|
jca |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( -. ( A lcm B ) = 0 /\ -. C = 0 ) ) |
| 166 |
165 135
|
sylibr |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> -. ( ( A lcm B ) = 0 \/ C = 0 ) ) |
| 167 |
54 166
|
jca |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( ( A lcm B ) e. ZZ /\ C e. ZZ ) /\ -. ( ( A lcm B ) = 0 \/ C = 0 ) ) ) |
| 168 |
|
lcmn0cl |
|- ( ( ( ( A lcm B ) e. ZZ /\ C e. ZZ ) /\ -. ( ( A lcm B ) = 0 \/ C = 0 ) ) -> ( ( A lcm B ) lcm C ) e. NN ) |
| 169 |
167 168
|
syl |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( A lcm B ) lcm C ) e. NN ) |
| 170 |
5
|
adantl |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> { A , B , C } C_ ZZ ) |
| 171 |
|
tpfi |
|- { A , B , C } e. Fin |
| 172 |
171
|
a1i |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> { A , B , C } e. Fin ) |
| 173 |
3
|
a1i |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( 0 e. { A , B , C } <-> ( 0 = A \/ 0 = B \/ 0 = C ) ) ) |
| 174 |
173
|
biimpd |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( 0 e. { A , B , C } -> ( 0 = A \/ 0 = B \/ 0 = C ) ) ) |
| 175 |
174
|
con3d |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( -. ( 0 = A \/ 0 = B \/ 0 = C ) -> -. 0 e. { A , B , C } ) ) |
| 176 |
175
|
impcom |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> -. 0 e. { A , B , C } ) |
| 177 |
|
df-nel |
|- ( 0 e/ { A , B , C } <-> -. 0 e. { A , B , C } ) |
| 178 |
176 177
|
sylibr |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> 0 e/ { A , B , C } ) |
| 179 |
|
lcmf |
|- ( ( ( ( A lcm B ) lcm C ) e. NN /\ ( { A , B , C } C_ ZZ /\ { A , B , C } e. Fin /\ 0 e/ { A , B , C } ) ) -> ( ( ( A lcm B ) lcm C ) = ( _lcm ` { A , B , C } ) <-> ( A. m e. { A , B , C } m || ( ( A lcm B ) lcm C ) /\ A. k e. NN ( A. m e. { A , B , C } m || k -> ( ( A lcm B ) lcm C ) <_ k ) ) ) ) |
| 180 |
169 170 172 178 179
|
syl13anc |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( ( A lcm B ) lcm C ) = ( _lcm ` { A , B , C } ) <-> ( A. m e. { A , B , C } m || ( ( A lcm B ) lcm C ) /\ A. k e. NN ( A. m e. { A , B , C } m || k -> ( ( A lcm B ) lcm C ) <_ k ) ) ) ) |
| 181 |
155 180
|
mpbird |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( A lcm B ) lcm C ) = ( _lcm ` { A , B , C } ) ) |
| 182 |
181
|
eqcomd |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( _lcm ` { A , B , C } ) = ( ( A lcm B ) lcm C ) ) |
| 183 |
50 182
|
pm2.61ian |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( _lcm ` { A , B , C } ) = ( ( A lcm B ) lcm C ) ) |