Metamath Proof Explorer


Theorem 0nellinds

Description: The group identity cannot be an element of an independent set. (Contributed by Thierry Arnoux, 8-May-2023)

Ref Expression
Hypothesis 0nellinds.1 0˙=0W
Assertion 0nellinds WLVecFLIndSW¬0˙F

Proof

Step Hyp Ref Expression
1 0nellinds.1 0˙=0W
2 oveq2 x=0˙kWx=kW0˙
3 sneq x=0˙x=0˙
4 3 difeq2d x=0˙Fx=F0˙
5 4 fveq2d x=0˙LSpanWFx=LSpanWF0˙
6 2 5 eleq12d x=0˙kWxLSpanWFxkW0˙LSpanWF0˙
7 6 notbid x=0˙¬kWxLSpanWFx¬kW0˙LSpanWF0˙
8 7 ralbidv x=0˙kBaseScalarW0ScalarW¬kWxLSpanWFxkBaseScalarW0ScalarW¬kW0˙LSpanWF0˙
9 eqid BaseW=BaseW
10 eqid W=W
11 eqid LSpanW=LSpanW
12 eqid ScalarW=ScalarW
13 eqid BaseScalarW=BaseScalarW
14 eqid 0ScalarW=0ScalarW
15 9 10 11 12 13 14 islinds2 WLVecFLIndSWFBaseWxFkBaseScalarW0ScalarW¬kWxLSpanWFx
16 15 simplbda WLVecFLIndSWxFkBaseScalarW0ScalarW¬kWxLSpanWFx
17 16 adantr WLVecFLIndSW0˙FxFkBaseScalarW0ScalarW¬kWxLSpanWFx
18 simpr WLVecFLIndSW0˙F0˙F
19 8 17 18 rspcdva WLVecFLIndSW0˙FkBaseScalarW0ScalarW¬kW0˙LSpanWF0˙
20 lveclmod WLVecWLMod
21 eqid 1ScalarW=1ScalarW
22 12 13 21 lmod1cl WLMod1ScalarWBaseScalarW
23 20 22 syl WLVec1ScalarWBaseScalarW
24 23 adantr WLVecFLIndSW1ScalarWBaseScalarW
25 12 lvecdrng WLVecScalarWDivRing
26 14 21 drngunz ScalarWDivRing1ScalarW0ScalarW
27 25 26 syl WLVec1ScalarW0ScalarW
28 27 adantr WLVecFLIndSW1ScalarW0ScalarW
29 eldifsn 1ScalarWBaseScalarW0ScalarW1ScalarWBaseScalarW1ScalarW0ScalarW
30 24 28 29 sylanbrc WLVecFLIndSW1ScalarWBaseScalarW0ScalarW
31 30 adantr WLVecFLIndSW0˙F1ScalarWBaseScalarW0ScalarW
32 20 ad2antrr WLVecFLIndSW0˙FWLMod
33 12 10 13 1 lmodvs0 WLMod1ScalarWBaseScalarW1ScalarWW0˙=0˙
34 32 22 33 syl2anc2 WLVecFLIndSW0˙F1ScalarWW0˙=0˙
35 9 linds1 FLIndSWFBaseW
36 35 ad2antlr WLVecFLIndSW0˙FFBaseW
37 36 ssdifssd WLVecFLIndSW0˙FF0˙BaseW
38 1 9 11 0ellsp WLModF0˙BaseW0˙LSpanWF0˙
39 32 37 38 syl2anc WLVecFLIndSW0˙F0˙LSpanWF0˙
40 34 39 eqeltrd WLVecFLIndSW0˙F1ScalarWW0˙LSpanWF0˙
41 oveq1 k=1ScalarWkW0˙=1ScalarWW0˙
42 41 eleq1d k=1ScalarWkW0˙LSpanWF0˙1ScalarWW0˙LSpanWF0˙
43 42 rspcev 1ScalarWBaseScalarW0ScalarW1ScalarWW0˙LSpanWF0˙kBaseScalarW0ScalarWkW0˙LSpanWF0˙
44 31 40 43 syl2anc WLVecFLIndSW0˙FkBaseScalarW0ScalarWkW0˙LSpanWF0˙
45 dfrex2 kBaseScalarW0ScalarWkW0˙LSpanWF0˙¬kBaseScalarW0ScalarW¬kW0˙LSpanWF0˙
46 44 45 sylib WLVecFLIndSW0˙F¬kBaseScalarW0ScalarW¬kW0˙LSpanWF0˙
47 19 46 pm2.65da WLVecFLIndSW¬0˙F