Metamath Proof Explorer


Theorem 0nellinds

Description: The group identity cannot be an element of an independent set. (Contributed by Thierry Arnoux, 8-May-2023)

Ref Expression
Hypothesis 0nellinds.1 0 ˙ = 0 W
Assertion 0nellinds W LVec F LIndS W ¬ 0 ˙ F

Proof

Step Hyp Ref Expression
1 0nellinds.1 0 ˙ = 0 W
2 oveq2 x = 0 ˙ k W x = k W 0 ˙
3 sneq x = 0 ˙ x = 0 ˙
4 3 difeq2d x = 0 ˙ F x = F 0 ˙
5 4 fveq2d x = 0 ˙ LSpan W F x = LSpan W F 0 ˙
6 2 5 eleq12d x = 0 ˙ k W x LSpan W F x k W 0 ˙ LSpan W F 0 ˙
7 6 notbid x = 0 ˙ ¬ k W x LSpan W F x ¬ k W 0 ˙ LSpan W F 0 ˙
8 7 ralbidv x = 0 ˙ k Base Scalar W 0 Scalar W ¬ k W x LSpan W F x k Base Scalar W 0 Scalar W ¬ k W 0 ˙ LSpan W F 0 ˙
9 eqid Base W = Base W
10 eqid W = W
11 eqid LSpan W = LSpan W
12 eqid Scalar W = Scalar W
13 eqid Base Scalar W = Base Scalar W
14 eqid 0 Scalar W = 0 Scalar W
15 9 10 11 12 13 14 islinds2 W LVec F LIndS W F Base W x F k Base Scalar W 0 Scalar W ¬ k W x LSpan W F x
16 15 simplbda W LVec F LIndS W x F k Base Scalar W 0 Scalar W ¬ k W x LSpan W F x
17 16 adantr W LVec F LIndS W 0 ˙ F x F k Base Scalar W 0 Scalar W ¬ k W x LSpan W F x
18 simpr W LVec F LIndS W 0 ˙ F 0 ˙ F
19 8 17 18 rspcdva W LVec F LIndS W 0 ˙ F k Base Scalar W 0 Scalar W ¬ k W 0 ˙ LSpan W F 0 ˙
20 lveclmod W LVec W LMod
21 eqid 1 Scalar W = 1 Scalar W
22 12 13 21 lmod1cl W LMod 1 Scalar W Base Scalar W
23 20 22 syl W LVec 1 Scalar W Base Scalar W
24 23 adantr W LVec F LIndS W 1 Scalar W Base Scalar W
25 12 lvecdrng W LVec Scalar W DivRing
26 14 21 drngunz Scalar W DivRing 1 Scalar W 0 Scalar W
27 25 26 syl W LVec 1 Scalar W 0 Scalar W
28 27 adantr W LVec F LIndS W 1 Scalar W 0 Scalar W
29 eldifsn 1 Scalar W Base Scalar W 0 Scalar W 1 Scalar W Base Scalar W 1 Scalar W 0 Scalar W
30 24 28 29 sylanbrc W LVec F LIndS W 1 Scalar W Base Scalar W 0 Scalar W
31 30 adantr W LVec F LIndS W 0 ˙ F 1 Scalar W Base Scalar W 0 Scalar W
32 20 ad2antrr W LVec F LIndS W 0 ˙ F W LMod
33 12 10 13 1 lmodvs0 W LMod 1 Scalar W Base Scalar W 1 Scalar W W 0 ˙ = 0 ˙
34 32 22 33 syl2anc2 W LVec F LIndS W 0 ˙ F 1 Scalar W W 0 ˙ = 0 ˙
35 9 linds1 F LIndS W F Base W
36 35 ad2antlr W LVec F LIndS W 0 ˙ F F Base W
37 36 ssdifssd W LVec F LIndS W 0 ˙ F F 0 ˙ Base W
38 1 9 11 0ellsp W LMod F 0 ˙ Base W 0 ˙ LSpan W F 0 ˙
39 32 37 38 syl2anc W LVec F LIndS W 0 ˙ F 0 ˙ LSpan W F 0 ˙
40 34 39 eqeltrd W LVec F LIndS W 0 ˙ F 1 Scalar W W 0 ˙ LSpan W F 0 ˙
41 oveq1 k = 1 Scalar W k W 0 ˙ = 1 Scalar W W 0 ˙
42 41 eleq1d k = 1 Scalar W k W 0 ˙ LSpan W F 0 ˙ 1 Scalar W W 0 ˙ LSpan W F 0 ˙
43 42 rspcev 1 Scalar W Base Scalar W 0 Scalar W 1 Scalar W W 0 ˙ LSpan W F 0 ˙ k Base Scalar W 0 Scalar W k W 0 ˙ LSpan W F 0 ˙
44 31 40 43 syl2anc W LVec F LIndS W 0 ˙ F k Base Scalar W 0 Scalar W k W 0 ˙ LSpan W F 0 ˙
45 dfrex2 k Base Scalar W 0 Scalar W k W 0 ˙ LSpan W F 0 ˙ ¬ k Base Scalar W 0 Scalar W ¬ k W 0 ˙ LSpan W F 0 ˙
46 44 45 sylib W LVec F LIndS W 0 ˙ F ¬ k Base Scalar W 0 Scalar W ¬ k W 0 ˙ LSpan W F 0 ˙
47 19 46 pm2.65da W LVec F LIndS W ¬ 0 ˙ F