Description: The group identity cannot be an element of an independent set. (Contributed by Thierry Arnoux, 8-May-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 0nellinds.1 | |
|
Assertion | 0nellinds | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nellinds.1 | |
|
2 | oveq2 | |
|
3 | sneq | |
|
4 | 3 | difeq2d | |
5 | 4 | fveq2d | |
6 | 2 5 | eleq12d | |
7 | 6 | notbid | |
8 | 7 | ralbidv | |
9 | eqid | |
|
10 | eqid | |
|
11 | eqid | |
|
12 | eqid | |
|
13 | eqid | |
|
14 | eqid | |
|
15 | 9 10 11 12 13 14 | islinds2 | |
16 | 15 | simplbda | |
17 | 16 | adantr | |
18 | simpr | |
|
19 | 8 17 18 | rspcdva | |
20 | lveclmod | |
|
21 | eqid | |
|
22 | 12 13 21 | lmod1cl | |
23 | 20 22 | syl | |
24 | 23 | adantr | |
25 | 12 | lvecdrng | |
26 | 14 21 | drngunz | |
27 | 25 26 | syl | |
28 | 27 | adantr | |
29 | eldifsn | |
|
30 | 24 28 29 | sylanbrc | |
31 | 30 | adantr | |
32 | 20 | ad2antrr | |
33 | 12 10 13 1 | lmodvs0 | |
34 | 32 22 33 | syl2anc2 | |
35 | 9 | linds1 | |
36 | 35 | ad2antlr | |
37 | 36 | ssdifssd | |
38 | 1 9 11 | 0ellsp | |
39 | 32 37 38 | syl2anc | |
40 | 34 39 | eqeltrd | |
41 | oveq1 | |
|
42 | 41 | eleq1d | |
43 | 42 | rspcev | |
44 | 31 40 43 | syl2anc | |
45 | dfrex2 | |
|
46 | 44 45 | sylib | |
47 | 19 46 | pm2.65da | |