| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relsdom |
|
| 2 |
1
|
brrelex2i |
|
| 3 |
|
sdomdom |
|
| 4 |
|
0sdom1dom |
|
| 5 |
3 4
|
sylibr |
|
| 6 |
|
0sdomg |
|
| 7 |
2 6
|
syl |
|
| 8 |
5 7
|
mpbid |
|
| 9 |
|
n0snor2el |
|
| 10 |
8 9
|
syl |
|
| 11 |
|
sdomnen |
|
| 12 |
|
df1o2 |
|
| 13 |
|
0ex |
|
| 14 |
|
vex |
|
| 15 |
|
en2sn |
|
| 16 |
13 14 15
|
mp2an |
|
| 17 |
12 16
|
eqbrtri |
|
| 18 |
|
breq2 |
|
| 19 |
17 18
|
mpbiri |
|
| 20 |
19
|
exlimiv |
|
| 21 |
11 20
|
nsyl |
|
| 22 |
10 21
|
olcnd |
|
| 23 |
|
rex2dom |
|
| 24 |
2 22 23
|
syl2anc |
|
| 25 |
|
snsspr1 |
|
| 26 |
|
df2o3 |
|
| 27 |
25 12 26
|
3sstr4i |
|
| 28 |
|
domssl |
|
| 29 |
27 28
|
mpan |
|
| 30 |
|
snnen2o |
|
| 31 |
13
|
a1i |
|
| 32 |
|
1oex |
|
| 33 |
32
|
a1i |
|
| 34 |
|
1n0 |
|
| 35 |
34
|
nesymi |
|
| 36 |
35
|
a1i |
|
| 37 |
31 33 36
|
enpr2d |
|
| 38 |
37
|
mptru |
|
| 39 |
26 38
|
eqbrtri |
|
| 40 |
|
breq1 |
|
| 41 |
39 40
|
mpbii |
|
| 42 |
30 41
|
mto |
|
| 43 |
42
|
nex |
|
| 44 |
|
2on0 |
|
| 45 |
|
f1cdmsn |
|
| 46 |
44 45
|
mpan2 |
|
| 47 |
43 46
|
mto |
|
| 48 |
47
|
nex |
|
| 49 |
|
brdomi |
|
| 50 |
48 49
|
mto |
|
| 51 |
|
breq2 |
|
| 52 |
50 51
|
mtbiri |
|
| 53 |
52
|
con2i |
|
| 54 |
53
|
nexdv |
|
| 55 |
|
reldom |
|
| 56 |
55
|
brrelex2i |
|
| 57 |
|
breng |
|
| 58 |
32 57
|
mpan |
|
| 59 |
56 58
|
syl |
|
| 60 |
29 4
|
sylibr |
|
| 61 |
56 6
|
syl |
|
| 62 |
60 61
|
mpbid |
|
| 63 |
|
f1ocnv |
|
| 64 |
|
f1of1 |
|
| 65 |
|
f1eq3 |
|
| 66 |
12 65
|
ax-mp |
|
| 67 |
64 66
|
sylib |
|
| 68 |
63 67
|
syl |
|
| 69 |
|
f1cdmsn |
|
| 70 |
68 69
|
sylan |
|
| 71 |
70
|
expcom |
|
| 72 |
71
|
exlimdv |
|
| 73 |
62 72
|
syl |
|
| 74 |
59 73
|
sylbid |
|
| 75 |
54 74
|
mtod |
|
| 76 |
|
brsdom |
|
| 77 |
29 75 76
|
sylanbrc |
|
| 78 |
24 77
|
impbii |
|