Metamath Proof Explorer


Theorem 2arymaptf1

Description: The mapping of binary (endo)functions is a one-to-one function into the set of binary operations. (Contributed by AV, 22-May-2024)

Ref Expression
Hypothesis 2arymaptf.h No typesetting found for |- H = ( h e. ( 2 -aryF X ) |-> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) ) with typecode |-
Assertion 2arymaptf1 Could not format assertion : No typesetting found for |- ( X e. V -> H : ( 2 -aryF X ) -1-1-> ( X ^m ( X X. X ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 2arymaptf.h Could not format H = ( h e. ( 2 -aryF X ) |-> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) ) : No typesetting found for |- H = ( h e. ( 2 -aryF X ) |-> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) ) with typecode |-
2 1 2arymaptf Could not format ( X e. V -> H : ( 2 -aryF X ) --> ( X ^m ( X X. X ) ) ) : No typesetting found for |- ( X e. V -> H : ( 2 -aryF X ) --> ( X ^m ( X X. X ) ) ) with typecode |-
3 1 2arymaptfv Could not format ( f e. ( 2 -aryF X ) -> ( H ` f ) = ( x e. X , y e. X |-> ( f ` { <. 0 , x >. , <. 1 , y >. } ) ) ) : No typesetting found for |- ( f e. ( 2 -aryF X ) -> ( H ` f ) = ( x e. X , y e. X |-> ( f ` { <. 0 , x >. , <. 1 , y >. } ) ) ) with typecode |-
4 3 ad2antrl Could not format ( ( X e. V /\ ( f e. ( 2 -aryF X ) /\ g e. ( 2 -aryF X ) ) ) -> ( H ` f ) = ( x e. X , y e. X |-> ( f ` { <. 0 , x >. , <. 1 , y >. } ) ) ) : No typesetting found for |- ( ( X e. V /\ ( f e. ( 2 -aryF X ) /\ g e. ( 2 -aryF X ) ) ) -> ( H ` f ) = ( x e. X , y e. X |-> ( f ` { <. 0 , x >. , <. 1 , y >. } ) ) ) with typecode |-
5 1 2arymaptfv Could not format ( g e. ( 2 -aryF X ) -> ( H ` g ) = ( x e. X , y e. X |-> ( g ` { <. 0 , x >. , <. 1 , y >. } ) ) ) : No typesetting found for |- ( g e. ( 2 -aryF X ) -> ( H ` g ) = ( x e. X , y e. X |-> ( g ` { <. 0 , x >. , <. 1 , y >. } ) ) ) with typecode |-
6 5 ad2antll Could not format ( ( X e. V /\ ( f e. ( 2 -aryF X ) /\ g e. ( 2 -aryF X ) ) ) -> ( H ` g ) = ( x e. X , y e. X |-> ( g ` { <. 0 , x >. , <. 1 , y >. } ) ) ) : No typesetting found for |- ( ( X e. V /\ ( f e. ( 2 -aryF X ) /\ g e. ( 2 -aryF X ) ) ) -> ( H ` g ) = ( x e. X , y e. X |-> ( g ` { <. 0 , x >. , <. 1 , y >. } ) ) ) with typecode |-
7 4 6 eqeq12d Could not format ( ( X e. V /\ ( f e. ( 2 -aryF X ) /\ g e. ( 2 -aryF X ) ) ) -> ( ( H ` f ) = ( H ` g ) <-> ( x e. X , y e. X |-> ( f ` { <. 0 , x >. , <. 1 , y >. } ) ) = ( x e. X , y e. X |-> ( g ` { <. 0 , x >. , <. 1 , y >. } ) ) ) ) : No typesetting found for |- ( ( X e. V /\ ( f e. ( 2 -aryF X ) /\ g e. ( 2 -aryF X ) ) ) -> ( ( H ` f ) = ( H ` g ) <-> ( x e. X , y e. X |-> ( f ` { <. 0 , x >. , <. 1 , y >. } ) ) = ( x e. X , y e. X |-> ( g ` { <. 0 , x >. , <. 1 , y >. } ) ) ) ) with typecode |-
8 fvex f0x1yV
9 8 rgen2w xXyXf0x1yV
10 mpo2eqb xXyXf0x1yVxX,yXf0x1y=xX,yXg0x1yxXyXf0x1y=g0x1y
11 9 10 mp1i Could not format ( ( X e. V /\ ( f e. ( 2 -aryF X ) /\ g e. ( 2 -aryF X ) ) ) -> ( ( x e. X , y e. X |-> ( f ` { <. 0 , x >. , <. 1 , y >. } ) ) = ( x e. X , y e. X |-> ( g ` { <. 0 , x >. , <. 1 , y >. } ) ) <-> A. x e. X A. y e. X ( f ` { <. 0 , x >. , <. 1 , y >. } ) = ( g ` { <. 0 , x >. , <. 1 , y >. } ) ) ) : No typesetting found for |- ( ( X e. V /\ ( f e. ( 2 -aryF X ) /\ g e. ( 2 -aryF X ) ) ) -> ( ( x e. X , y e. X |-> ( f ` { <. 0 , x >. , <. 1 , y >. } ) ) = ( x e. X , y e. X |-> ( g ` { <. 0 , x >. , <. 1 , y >. } ) ) <-> A. x e. X A. y e. X ( f ` { <. 0 , x >. , <. 1 , y >. } ) = ( g ` { <. 0 , x >. , <. 1 , y >. } ) ) ) with typecode |-
12 2aryfvalel Could not format ( X e. V -> ( f e. ( 2 -aryF X ) <-> f : ( X ^m { 0 , 1 } ) --> X ) ) : No typesetting found for |- ( X e. V -> ( f e. ( 2 -aryF X ) <-> f : ( X ^m { 0 , 1 } ) --> X ) ) with typecode |-
13 2aryfvalel Could not format ( X e. V -> ( g e. ( 2 -aryF X ) <-> g : ( X ^m { 0 , 1 } ) --> X ) ) : No typesetting found for |- ( X e. V -> ( g e. ( 2 -aryF X ) <-> g : ( X ^m { 0 , 1 } ) --> X ) ) with typecode |-
14 12 13 anbi12d Could not format ( X e. V -> ( ( f e. ( 2 -aryF X ) /\ g e. ( 2 -aryF X ) ) <-> ( f : ( X ^m { 0 , 1 } ) --> X /\ g : ( X ^m { 0 , 1 } ) --> X ) ) ) : No typesetting found for |- ( X e. V -> ( ( f e. ( 2 -aryF X ) /\ g e. ( 2 -aryF X ) ) <-> ( f : ( X ^m { 0 , 1 } ) --> X /\ g : ( X ^m { 0 , 1 } ) --> X ) ) ) with typecode |-
15 ffn f:X01XfFnX01
16 15 adantr f:X01Xg:X01XfFnX01
17 16 3ad2ant2 XVf:X01Xg:X01XxXyXf0x1y=g0x1yfFnX01
18 ffn g:X01XgFnX01
19 18 adantl f:X01Xg:X01XgFnX01
20 19 3ad2ant2 XVf:X01Xg:X01XxXyXf0x1y=g0x1ygFnX01
21 elmapi zX01z:01X
22 0ne1 01
23 c0ex 0V
24 1ex 1V
25 23 24 fprb 01z:01XaXbXz=0a1b
26 22 25 ax-mp z:01XaXbXz=0a1b
27 21 26 sylib zX01aXbXz=0a1b
28 opeq2 x=a0x=0a
29 28 preq1d x=a0x1y=0a1y
30 29 fveq2d x=af0x1y=f0a1y
31 29 fveq2d x=ag0x1y=g0a1y
32 30 31 eqeq12d x=af0x1y=g0x1yf0a1y=g0a1y
33 opeq2 y=b1y=1b
34 33 preq2d y=b0a1y=0a1b
35 34 fveq2d y=bf0a1y=f0a1b
36 34 fveq2d y=bg0a1y=g0a1b
37 35 36 eqeq12d y=bf0a1y=g0a1yf0a1b=g0a1b
38 32 37 rspc2va aXbXxXyXf0x1y=g0x1yf0a1b=g0a1b
39 38 expcom xXyXf0x1y=g0x1yaXbXf0a1b=g0a1b
40 39 3ad2ant3 XVf:X01Xg:X01XxXyXf0x1y=g0x1yaXbXf0a1b=g0a1b
41 40 com12 aXbXXVf:X01Xg:X01XxXyXf0x1y=g0x1yf0a1b=g0a1b
42 41 adantr aXbXz=0a1bXVf:X01Xg:X01XxXyXf0x1y=g0x1yf0a1b=g0a1b
43 fveq2 z=0a1bfz=f0a1b
44 fveq2 z=0a1bgz=g0a1b
45 43 44 eqeq12d z=0a1bfz=gzf0a1b=g0a1b
46 45 adantl aXbXz=0a1bfz=gzf0a1b=g0a1b
47 42 46 sylibrd aXbXz=0a1bXVf:X01Xg:X01XxXyXf0x1y=g0x1yfz=gz
48 47 ex aXbXz=0a1bXVf:X01Xg:X01XxXyXf0x1y=g0x1yfz=gz
49 48 rexlimivv aXbXz=0a1bXVf:X01Xg:X01XxXyXf0x1y=g0x1yfz=gz
50 27 49 syl zX01XVf:X01Xg:X01XxXyXf0x1y=g0x1yfz=gz
51 50 impcom XVf:X01Xg:X01XxXyXf0x1y=g0x1yzX01fz=gz
52 17 20 51 eqfnfvd XVf:X01Xg:X01XxXyXf0x1y=g0x1yf=g
53 52 3exp XVf:X01Xg:X01XxXyXf0x1y=g0x1yf=g
54 14 53 sylbid Could not format ( X e. V -> ( ( f e. ( 2 -aryF X ) /\ g e. ( 2 -aryF X ) ) -> ( A. x e. X A. y e. X ( f ` { <. 0 , x >. , <. 1 , y >. } ) = ( g ` { <. 0 , x >. , <. 1 , y >. } ) -> f = g ) ) ) : No typesetting found for |- ( X e. V -> ( ( f e. ( 2 -aryF X ) /\ g e. ( 2 -aryF X ) ) -> ( A. x e. X A. y e. X ( f ` { <. 0 , x >. , <. 1 , y >. } ) = ( g ` { <. 0 , x >. , <. 1 , y >. } ) -> f = g ) ) ) with typecode |-
55 54 imp Could not format ( ( X e. V /\ ( f e. ( 2 -aryF X ) /\ g e. ( 2 -aryF X ) ) ) -> ( A. x e. X A. y e. X ( f ` { <. 0 , x >. , <. 1 , y >. } ) = ( g ` { <. 0 , x >. , <. 1 , y >. } ) -> f = g ) ) : No typesetting found for |- ( ( X e. V /\ ( f e. ( 2 -aryF X ) /\ g e. ( 2 -aryF X ) ) ) -> ( A. x e. X A. y e. X ( f ` { <. 0 , x >. , <. 1 , y >. } ) = ( g ` { <. 0 , x >. , <. 1 , y >. } ) -> f = g ) ) with typecode |-
56 11 55 sylbid Could not format ( ( X e. V /\ ( f e. ( 2 -aryF X ) /\ g e. ( 2 -aryF X ) ) ) -> ( ( x e. X , y e. X |-> ( f ` { <. 0 , x >. , <. 1 , y >. } ) ) = ( x e. X , y e. X |-> ( g ` { <. 0 , x >. , <. 1 , y >. } ) ) -> f = g ) ) : No typesetting found for |- ( ( X e. V /\ ( f e. ( 2 -aryF X ) /\ g e. ( 2 -aryF X ) ) ) -> ( ( x e. X , y e. X |-> ( f ` { <. 0 , x >. , <. 1 , y >. } ) ) = ( x e. X , y e. X |-> ( g ` { <. 0 , x >. , <. 1 , y >. } ) ) -> f = g ) ) with typecode |-
57 7 56 sylbid Could not format ( ( X e. V /\ ( f e. ( 2 -aryF X ) /\ g e. ( 2 -aryF X ) ) ) -> ( ( H ` f ) = ( H ` g ) -> f = g ) ) : No typesetting found for |- ( ( X e. V /\ ( f e. ( 2 -aryF X ) /\ g e. ( 2 -aryF X ) ) ) -> ( ( H ` f ) = ( H ` g ) -> f = g ) ) with typecode |-
58 57 ralrimivva Could not format ( X e. V -> A. f e. ( 2 -aryF X ) A. g e. ( 2 -aryF X ) ( ( H ` f ) = ( H ` g ) -> f = g ) ) : No typesetting found for |- ( X e. V -> A. f e. ( 2 -aryF X ) A. g e. ( 2 -aryF X ) ( ( H ` f ) = ( H ` g ) -> f = g ) ) with typecode |-
59 dff13 Could not format ( H : ( 2 -aryF X ) -1-1-> ( X ^m ( X X. X ) ) <-> ( H : ( 2 -aryF X ) --> ( X ^m ( X X. X ) ) /\ A. f e. ( 2 -aryF X ) A. g e. ( 2 -aryF X ) ( ( H ` f ) = ( H ` g ) -> f = g ) ) ) : No typesetting found for |- ( H : ( 2 -aryF X ) -1-1-> ( X ^m ( X X. X ) ) <-> ( H : ( 2 -aryF X ) --> ( X ^m ( X X. X ) ) /\ A. f e. ( 2 -aryF X ) A. g e. ( 2 -aryF X ) ( ( H ` f ) = ( H ` g ) -> f = g ) ) ) with typecode |-
60 2 58 59 sylanbrc Could not format ( X e. V -> H : ( 2 -aryF X ) -1-1-> ( X ^m ( X X. X ) ) ) : No typesetting found for |- ( X e. V -> H : ( 2 -aryF X ) -1-1-> ( X ^m ( X X. X ) ) ) with typecode |-