Metamath Proof Explorer


Theorem 2idlcpbl

Description: The coset equivalence relation for a two-sided ideal is compatible with ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015) (Proof ahortened by AV, 9-Mar-2025.)

Ref Expression
Hypotheses 2idlcpbl.x X=BaseR
2idlcpbl.r E=R~QGS
2idlcpbl.i I=2IdealR
2idlcpbl.t ·˙=R
Assertion 2idlcpbl RRingSIAECBEDA·˙BEC·˙D

Proof

Step Hyp Ref Expression
1 2idlcpbl.x X=BaseR
2 2idlcpbl.r E=R~QGS
3 2idlcpbl.i I=2IdealR
4 2idlcpbl.t ·˙=R
5 simpll RRingSIAECBEDRRing
6 eqid LIdealR=LIdealR
7 eqid opprR=opprR
8 eqid LIdealopprR=LIdealopprR
9 6 7 8 3 2idlelb SISLIdealRSLIdealopprR
10 9 simplbi SISLIdealR
11 10 ad2antlr RRingSIAECBEDSLIdealR
12 6 lidlsubg RRingSLIdealRSSubGrpR
13 5 11 12 syl2anc RRingSIAECBEDSSubGrpR
14 1 2 eqger SSubGrpREErX
15 13 14 syl RRingSIAECBEDEErX
16 simprl RRingSIAECBEDAEC
17 15 16 ersym RRingSIAECBEDCEA
18 ringabl RRingRAbel
19 18 ad2antrr RRingSIAECBEDRAbel
20 1 3 2idlss SISX
21 20 ad2antlr RRingSIAECBEDSX
22 eqid -R=-R
23 1 22 2 eqgabl RAbelSXCEACXAXA-RCS
24 19 21 23 syl2anc RRingSIAECBEDCEACXAXA-RCS
25 17 24 mpbid RRingSIAECBEDCXAXA-RCS
26 25 simp2d RRingSIAECBEDAX
27 simprr RRingSIAECBEDBED
28 1 22 2 eqgabl RAbelSXBEDBXDXD-RBS
29 19 21 28 syl2anc RRingSIAECBEDBEDBXDXD-RBS
30 27 29 mpbid RRingSIAECBEDBXDXD-RBS
31 30 simp1d RRingSIAECBEDBX
32 1 4 5 26 31 ringcld RRingSIAECBEDA·˙BX
33 25 simp1d RRingSIAECBEDCX
34 30 simp2d RRingSIAECBEDDX
35 1 4 5 33 34 ringcld RRingSIAECBEDC·˙DX
36 ringgrp RRingRGrp
37 36 ad2antrr RRingSIAECBEDRGrp
38 1 4 5 33 31 ringcld RRingSIAECBEDC·˙BX
39 1 22 grpnnncan2 RGrpC·˙DXA·˙BXC·˙BXC·˙D-RC·˙B-RA·˙B-RC·˙B=C·˙D-RA·˙B
40 37 35 32 38 39 syl13anc RRingSIAECBEDC·˙D-RC·˙B-RA·˙B-RC·˙B=C·˙D-RA·˙B
41 1 4 22 5 33 34 31 ringsubdi RRingSIAECBEDC·˙D-RB=C·˙D-RC·˙B
42 30 simp3d RRingSIAECBEDD-RBS
43 6 1 4 lidlmcl RRingSLIdealRCXD-RBSC·˙D-RBS
44 5 11 33 42 43 syl22anc RRingSIAECBEDC·˙D-RBS
45 41 44 eqeltrrd RRingSIAECBEDC·˙D-RC·˙BS
46 eqid opprR=opprR
47 1 4 7 46 opprmul BopprRA-RC=A-RC·˙B
48 1 4 22 5 26 33 31 ringsubdir RRingSIAECBEDA-RC·˙B=A·˙B-RC·˙B
49 47 48 eqtrid RRingSIAECBEDBopprRA-RC=A·˙B-RC·˙B
50 7 opprring RRingopprRRing
51 50 ad2antrr RRingSIAECBEDopprRRing
52 9 simprbi SISLIdealopprR
53 52 ad2antlr RRingSIAECBEDSLIdealopprR
54 25 simp3d RRingSIAECBEDA-RCS
55 7 1 opprbas X=BaseopprR
56 8 55 46 lidlmcl opprRRingSLIdealopprRBXA-RCSBopprRA-RCS
57 51 53 31 54 56 syl22anc RRingSIAECBEDBopprRA-RCS
58 49 57 eqeltrrd RRingSIAECBEDA·˙B-RC·˙BS
59 6 22 lidlsubcl RRingSLIdealRC·˙D-RC·˙BSA·˙B-RC·˙BSC·˙D-RC·˙B-RA·˙B-RC·˙BS
60 5 11 45 58 59 syl22anc RRingSIAECBEDC·˙D-RC·˙B-RA·˙B-RC·˙BS
61 40 60 eqeltrrd RRingSIAECBEDC·˙D-RA·˙BS
62 1 22 2 eqgabl RAbelSXA·˙BEC·˙DA·˙BXC·˙DXC·˙D-RA·˙BS
63 19 21 62 syl2anc RRingSIAECBEDA·˙BEC·˙DA·˙BXC·˙DXC·˙D-RA·˙BS
64 32 35 61 63 mpbir3and RRingSIAECBEDA·˙BEC·˙D
65 64 ex RRingSIAECBEDA·˙BEC·˙D