Metamath Proof Explorer


Theorem 2lgslem1a1

Description: Lemma 1 for 2lgslem1a . (Contributed by AV, 16-Jun-2021)

Ref Expression
Assertion 2lgslem1a1 P¬2Pi1P12i2=i2modP

Proof

Step Hyp Ref Expression
1 nnrp PP+
2 1 adantr P¬2PP+
3 elfzelz i1P12i
4 zre ii
5 2re 2
6 5 a1i i2
7 4 6 remulcld ii2
8 3 7 syl i1P12i2
9 2 8 anim12ci P¬2Pi1P12i2P+
10 elfznn i1P12i
11 nnre ii
12 nnnn0 ii0
13 12 nn0ge0d i0i
14 0le2 02
15 5 14 pm3.2i 202
16 15 a1i i202
17 mulge0 i0i2020i2
18 11 13 16 17 syl21anc i0i2
19 10 18 syl i1P120i2
20 19 adantl P¬2Pi1P120i2
21 elfz2 i1P121P12i1iiP12
22 4 3ad2ant3 1P12ii
23 zre P12P12
24 23 3ad2ant2 1P12iP12
25 2pos 0<2
26 5 25 pm3.2i 20<2
27 26 a1i 1P12i20<2
28 lemul1 iP1220<2iP12i2P122
29 22 24 27 28 syl3anc 1P12iiP12i2P122
30 nncn PP
31 peano2cnm PP1
32 30 31 syl PP1
33 2cnd P2
34 2ne0 20
35 34 a1i P20
36 32 33 35 divcan1d PP122=P1
37 36 adantr P¬2PP122=P1
38 37 adantl 1P12iP¬2PP122=P1
39 38 breq2d 1P12iP¬2Pi2P122i2P1
40 id ii
41 2z 2
42 41 a1i i2
43 40 42 zmulcld ii2
44 43 3ad2ant3 1P12ii2
45 nnz PP
46 45 adantr P¬2PP
47 zltlem1 i2Pi2<Pi2P1
48 44 46 47 syl2an 1P12iP¬2Pi2<Pi2P1
49 48 biimprd 1P12iP¬2Pi2P1i2<P
50 39 49 sylbid 1P12iP¬2Pi2P122i2<P
51 50 ex 1P12iP¬2Pi2P122i2<P
52 51 com23 1P12ii2P122P¬2Pi2<P
53 29 52 sylbid 1P12iiP12P¬2Pi2<P
54 53 a1d 1P12i1iiP12P¬2Pi2<P
55 54 imp32 1P12i1iiP12P¬2Pi2<P
56 21 55 sylbi i1P12P¬2Pi2<P
57 56 impcom P¬2Pi1P12i2<P
58 modid i2P+0i2i2<Pi2modP=i2
59 9 20 57 58 syl12anc P¬2Pi1P12i2modP=i2
60 59 eqcomd P¬2Pi1P12i2=i2modP
61 60 ralrimiva P¬2Pi1P12i2=i2modP