Description: Lemma 1 for 2lgslem1a . (Contributed by AV, 16-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | 2lgslem1a1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnrp | |
|
2 | 1 | adantr | |
3 | elfzelz | |
|
4 | zre | |
|
5 | 2re | |
|
6 | 5 | a1i | |
7 | 4 6 | remulcld | |
8 | 3 7 | syl | |
9 | 2 8 | anim12ci | |
10 | elfznn | |
|
11 | nnre | |
|
12 | nnnn0 | |
|
13 | 12 | nn0ge0d | |
14 | 0le2 | |
|
15 | 5 14 | pm3.2i | |
16 | 15 | a1i | |
17 | mulge0 | |
|
18 | 11 13 16 17 | syl21anc | |
19 | 10 18 | syl | |
20 | 19 | adantl | |
21 | elfz2 | |
|
22 | 4 | 3ad2ant3 | |
23 | zre | |
|
24 | 23 | 3ad2ant2 | |
25 | 2pos | |
|
26 | 5 25 | pm3.2i | |
27 | 26 | a1i | |
28 | lemul1 | |
|
29 | 22 24 27 28 | syl3anc | |
30 | nncn | |
|
31 | peano2cnm | |
|
32 | 30 31 | syl | |
33 | 2cnd | |
|
34 | 2ne0 | |
|
35 | 34 | a1i | |
36 | 32 33 35 | divcan1d | |
37 | 36 | adantr | |
38 | 37 | adantl | |
39 | 38 | breq2d | |
40 | id | |
|
41 | 2z | |
|
42 | 41 | a1i | |
43 | 40 42 | zmulcld | |
44 | 43 | 3ad2ant3 | |
45 | nnz | |
|
46 | 45 | adantr | |
47 | zltlem1 | |
|
48 | 44 46 47 | syl2an | |
49 | 48 | biimprd | |
50 | 39 49 | sylbid | |
51 | 50 | ex | |
52 | 51 | com23 | |
53 | 29 52 | sylbid | |
54 | 53 | a1d | |
55 | 54 | imp32 | |
56 | 21 55 | sylbi | |
57 | 56 | impcom | |
58 | modid | |
|
59 | 9 20 57 58 | syl12anc | |
60 | 59 | eqcomd | |
61 | 60 | ralrimiva | |