Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Quadratic reciprocity
2lgslem3c
Next ⟩
2lgslem3d
Metamath Proof Explorer
Ascii
Unicode
Theorem
2lgslem3c
Description:
Lemma for
2lgslem3c1
.
(Contributed by
AV
, 16-Jul-2021)
Ref
Expression
Hypothesis
2lgslem2.n
⊢
N
=
P
−
1
2
−
P
4
Assertion
2lgslem3c
⊢
K
∈
ℕ
0
∧
P
=
8
K
+
5
→
N
=
2
K
+
1
Proof
Step
Hyp
Ref
Expression
1
2lgslem2.n
⊢
N
=
P
−
1
2
−
P
4
2
oveq1
⊢
P
=
8
K
+
5
→
P
−
1
=
8
K
+
5
-
1
3
2
oveq1d
⊢
P
=
8
K
+
5
→
P
−
1
2
=
8
K
+
5
-
1
2
4
fvoveq1
⊢
P
=
8
K
+
5
→
P
4
=
8
K
+
5
4
5
3
4
oveq12d
⊢
P
=
8
K
+
5
→
P
−
1
2
−
P
4
=
8
K
+
5
-
1
2
−
8
K
+
5
4
6
1
5
eqtrid
⊢
P
=
8
K
+
5
→
N
=
8
K
+
5
-
1
2
−
8
K
+
5
4
7
8nn0
⊢
8
∈
ℕ
0
8
7
a1i
⊢
K
∈
ℕ
0
→
8
∈
ℕ
0
9
id
⊢
K
∈
ℕ
0
→
K
∈
ℕ
0
10
8
9
nn0mulcld
⊢
K
∈
ℕ
0
→
8
K
∈
ℕ
0
11
10
nn0cnd
⊢
K
∈
ℕ
0
→
8
K
∈
ℂ
12
5cn
⊢
5
∈
ℂ
13
12
a1i
⊢
K
∈
ℕ
0
→
5
∈
ℂ
14
1cnd
⊢
K
∈
ℕ
0
→
1
∈
ℂ
15
11
13
14
addsubassd
⊢
K
∈
ℕ
0
→
8
K
+
5
-
1
=
8
K
+
5
-
1
16
4t2e8
⊢
4
⋅
2
=
8
17
16
eqcomi
⊢
8
=
4
⋅
2
18
17
a1i
⊢
K
∈
ℕ
0
→
8
=
4
⋅
2
19
18
oveq1d
⊢
K
∈
ℕ
0
→
8
K
=
4
⋅
2
K
20
4cn
⊢
4
∈
ℂ
21
20
a1i
⊢
K
∈
ℕ
0
→
4
∈
ℂ
22
2cn
⊢
2
∈
ℂ
23
22
a1i
⊢
K
∈
ℕ
0
→
2
∈
ℂ
24
nn0cn
⊢
K
∈
ℕ
0
→
K
∈
ℂ
25
21
23
24
mul32d
⊢
K
∈
ℕ
0
→
4
⋅
2
K
=
4
K
⋅
2
26
19
25
eqtrd
⊢
K
∈
ℕ
0
→
8
K
=
4
K
⋅
2
27
5m1e4
⊢
5
−
1
=
4
28
27
a1i
⊢
K
∈
ℕ
0
→
5
−
1
=
4
29
26
28
oveq12d
⊢
K
∈
ℕ
0
→
8
K
+
5
-
1
=
4
K
⋅
2
+
4
30
15
29
eqtrd
⊢
K
∈
ℕ
0
→
8
K
+
5
-
1
=
4
K
⋅
2
+
4
31
30
oveq1d
⊢
K
∈
ℕ
0
→
8
K
+
5
-
1
2
=
4
K
⋅
2
+
4
2
32
4nn0
⊢
4
∈
ℕ
0
33
32
a1i
⊢
K
∈
ℕ
0
→
4
∈
ℕ
0
34
33
9
nn0mulcld
⊢
K
∈
ℕ
0
→
4
K
∈
ℕ
0
35
34
nn0cnd
⊢
K
∈
ℕ
0
→
4
K
∈
ℂ
36
35
23
mulcld
⊢
K
∈
ℕ
0
→
4
K
⋅
2
∈
ℂ
37
2rp
⊢
2
∈
ℝ
+
38
37
a1i
⊢
K
∈
ℕ
0
→
2
∈
ℝ
+
39
38
rpcnne0d
⊢
K
∈
ℕ
0
→
2
∈
ℂ
∧
2
≠
0
40
divdir
⊢
4
K
⋅
2
∈
ℂ
∧
4
∈
ℂ
∧
2
∈
ℂ
∧
2
≠
0
→
4
K
⋅
2
+
4
2
=
4
K
⋅
2
2
+
4
2
41
36
21
39
40
syl3anc
⊢
K
∈
ℕ
0
→
4
K
⋅
2
+
4
2
=
4
K
⋅
2
2
+
4
2
42
2ne0
⊢
2
≠
0
43
42
a1i
⊢
K
∈
ℕ
0
→
2
≠
0
44
35
23
43
divcan4d
⊢
K
∈
ℕ
0
→
4
K
⋅
2
2
=
4
K
45
4d2e2
⊢
4
2
=
2
46
45
a1i
⊢
K
∈
ℕ
0
→
4
2
=
2
47
44
46
oveq12d
⊢
K
∈
ℕ
0
→
4
K
⋅
2
2
+
4
2
=
4
K
+
2
48
31
41
47
3eqtrd
⊢
K
∈
ℕ
0
→
8
K
+
5
-
1
2
=
4
K
+
2
49
4ne0
⊢
4
≠
0
50
20
49
pm3.2i
⊢
4
∈
ℂ
∧
4
≠
0
51
50
a1i
⊢
K
∈
ℕ
0
→
4
∈
ℂ
∧
4
≠
0
52
divdir
⊢
8
K
∈
ℂ
∧
5
∈
ℂ
∧
4
∈
ℂ
∧
4
≠
0
→
8
K
+
5
4
=
8
K
4
+
5
4
53
11
13
51
52
syl3anc
⊢
K
∈
ℕ
0
→
8
K
+
5
4
=
8
K
4
+
5
4
54
8cn
⊢
8
∈
ℂ
55
54
a1i
⊢
K
∈
ℕ
0
→
8
∈
ℂ
56
div23
⊢
8
∈
ℂ
∧
K
∈
ℂ
∧
4
∈
ℂ
∧
4
≠
0
→
8
K
4
=
8
4
K
57
55
24
51
56
syl3anc
⊢
K
∈
ℕ
0
→
8
K
4
=
8
4
K
58
17
oveq1i
⊢
8
4
=
4
⋅
2
4
59
22
20
49
divcan3i
⊢
4
⋅
2
4
=
2
60
58
59
eqtri
⊢
8
4
=
2
61
60
a1i
⊢
K
∈
ℕ
0
→
8
4
=
2
62
61
oveq1d
⊢
K
∈
ℕ
0
→
8
4
K
=
2
K
63
57
62
eqtrd
⊢
K
∈
ℕ
0
→
8
K
4
=
2
K
64
63
oveq1d
⊢
K
∈
ℕ
0
→
8
K
4
+
5
4
=
2
K
+
5
4
65
53
64
eqtrd
⊢
K
∈
ℕ
0
→
8
K
+
5
4
=
2
K
+
5
4
66
65
fveq2d
⊢
K
∈
ℕ
0
→
8
K
+
5
4
=
2
K
+
5
4
67
1lt4
⊢
1
<
4
68
2nn0
⊢
2
∈
ℕ
0
69
68
a1i
⊢
K
∈
ℕ
0
→
2
∈
ℕ
0
70
69
9
nn0mulcld
⊢
K
∈
ℕ
0
→
2
K
∈
ℕ
0
71
70
nn0zd
⊢
K
∈
ℕ
0
→
2
K
∈
ℤ
72
71
peano2zd
⊢
K
∈
ℕ
0
→
2
K
+
1
∈
ℤ
73
1nn0
⊢
1
∈
ℕ
0
74
73
a1i
⊢
K
∈
ℕ
0
→
1
∈
ℕ
0
75
4nn
⊢
4
∈
ℕ
76
75
a1i
⊢
K
∈
ℕ
0
→
4
∈
ℕ
77
adddivflid
⊢
2
K
+
1
∈
ℤ
∧
1
∈
ℕ
0
∧
4
∈
ℕ
→
1
<
4
↔
2
K
+
1
+
1
4
=
2
K
+
1
78
72
74
76
77
syl3anc
⊢
K
∈
ℕ
0
→
1
<
4
↔
2
K
+
1
+
1
4
=
2
K
+
1
79
23
24
mulcld
⊢
K
∈
ℕ
0
→
2
K
∈
ℂ
80
49
a1i
⊢
K
∈
ℕ
0
→
4
≠
0
81
21
80
reccld
⊢
K
∈
ℕ
0
→
1
4
∈
ℂ
82
79
14
81
addassd
⊢
K
∈
ℕ
0
→
2
K
+
1
+
1
4
=
2
K
+
1
+
1
4
83
df-5
⊢
5
=
4
+
1
84
83
oveq1i
⊢
5
4
=
4
+
1
4
85
ax-1cn
⊢
1
∈
ℂ
86
20
85
20
49
divdiri
⊢
4
+
1
4
=
4
4
+
1
4
87
20
49
dividi
⊢
4
4
=
1
88
87
oveq1i
⊢
4
4
+
1
4
=
1
+
1
4
89
84
86
88
3eqtri
⊢
5
4
=
1
+
1
4
90
89
a1i
⊢
K
∈
ℕ
0
→
5
4
=
1
+
1
4
91
90
eqcomd
⊢
K
∈
ℕ
0
→
1
+
1
4
=
5
4
92
91
oveq2d
⊢
K
∈
ℕ
0
→
2
K
+
1
+
1
4
=
2
K
+
5
4
93
82
92
eqtrd
⊢
K
∈
ℕ
0
→
2
K
+
1
+
1
4
=
2
K
+
5
4
94
93
fveqeq2d
⊢
K
∈
ℕ
0
→
2
K
+
1
+
1
4
=
2
K
+
1
↔
2
K
+
5
4
=
2
K
+
1
95
78
94
bitrd
⊢
K
∈
ℕ
0
→
1
<
4
↔
2
K
+
5
4
=
2
K
+
1
96
67
95
mpbii
⊢
K
∈
ℕ
0
→
2
K
+
5
4
=
2
K
+
1
97
66
96
eqtrd
⊢
K
∈
ℕ
0
→
8
K
+
5
4
=
2
K
+
1
98
48
97
oveq12d
⊢
K
∈
ℕ
0
→
8
K
+
5
-
1
2
−
8
K
+
5
4
=
4
K
+
2
-
2
K
+
1
99
70
nn0cnd
⊢
K
∈
ℕ
0
→
2
K
∈
ℂ
100
35
23
99
14
addsub4d
⊢
K
∈
ℕ
0
→
4
K
+
2
-
2
K
+
1
=
4
K
−
2
K
+
2
-
1
101
2t2e4
⊢
2
⋅
2
=
4
102
101
eqcomi
⊢
4
=
2
⋅
2
103
102
a1i
⊢
K
∈
ℕ
0
→
4
=
2
⋅
2
104
103
oveq1d
⊢
K
∈
ℕ
0
→
4
K
=
2
⋅
2
K
105
23
23
24
mulassd
⊢
K
∈
ℕ
0
→
2
⋅
2
K
=
2
2
K
106
104
105
eqtrd
⊢
K
∈
ℕ
0
→
4
K
=
2
2
K
107
106
oveq1d
⊢
K
∈
ℕ
0
→
4
K
−
2
K
=
2
2
K
−
2
K
108
2txmxeqx
⊢
2
K
∈
ℂ
→
2
2
K
−
2
K
=
2
K
109
99
108
syl
⊢
K
∈
ℕ
0
→
2
2
K
−
2
K
=
2
K
110
107
109
eqtrd
⊢
K
∈
ℕ
0
→
4
K
−
2
K
=
2
K
111
2m1e1
⊢
2
−
1
=
1
112
111
a1i
⊢
K
∈
ℕ
0
→
2
−
1
=
1
113
110
112
oveq12d
⊢
K
∈
ℕ
0
→
4
K
−
2
K
+
2
-
1
=
2
K
+
1
114
98
100
113
3eqtrd
⊢
K
∈
ℕ
0
→
8
K
+
5
-
1
2
−
8
K
+
5
4
=
2
K
+
1
115
6
114
sylan9eqr
⊢
K
∈
ℕ
0
∧
P
=
8
K
+
5
→
N
=
2
K
+
1