Metamath Proof Explorer


Theorem 2lgslem3c

Description: Lemma for 2lgslem3c1 . (Contributed by AV, 16-Jul-2021)

Ref Expression
Hypothesis 2lgslem2.n N=P12P4
Assertion 2lgslem3c K0P=8K+5N=2K+1

Proof

Step Hyp Ref Expression
1 2lgslem2.n N=P12P4
2 oveq1 P=8K+5P1=8K+5-1
3 2 oveq1d P=8K+5P12=8K+5-12
4 fvoveq1 P=8K+5P4=8K+54
5 3 4 oveq12d P=8K+5P12P4=8K+5-128K+54
6 1 5 eqtrid P=8K+5N=8K+5-128K+54
7 8nn0 80
8 7 a1i K080
9 id K0K0
10 8 9 nn0mulcld K08K0
11 10 nn0cnd K08K
12 5cn 5
13 12 a1i K05
14 1cnd K01
15 11 13 14 addsubassd K08K+5-1=8K+5-1
16 4t2e8 42=8
17 16 eqcomi 8=42
18 17 a1i K08=42
19 18 oveq1d K08K=42K
20 4cn 4
21 20 a1i K04
22 2cn 2
23 22 a1i K02
24 nn0cn K0K
25 21 23 24 mul32d K042K=4K2
26 19 25 eqtrd K08K=4K2
27 5m1e4 51=4
28 27 a1i K051=4
29 26 28 oveq12d K08K+5-1=4K2+4
30 15 29 eqtrd K08K+5-1=4K2+4
31 30 oveq1d K08K+5-12=4K2+42
32 4nn0 40
33 32 a1i K040
34 33 9 nn0mulcld K04K0
35 34 nn0cnd K04K
36 35 23 mulcld K04K2
37 2rp 2+
38 37 a1i K02+
39 38 rpcnne0d K0220
40 divdir 4K242204K2+42=4K22+42
41 36 21 39 40 syl3anc K04K2+42=4K22+42
42 2ne0 20
43 42 a1i K020
44 35 23 43 divcan4d K04K22=4K
45 4d2e2 42=2
46 45 a1i K042=2
47 44 46 oveq12d K04K22+42=4K+2
48 31 41 47 3eqtrd K08K+5-12=4K+2
49 4ne0 40
50 20 49 pm3.2i 440
51 50 a1i K0440
52 divdir 8K54408K+54=8K4+54
53 11 13 51 52 syl3anc K08K+54=8K4+54
54 8cn 8
55 54 a1i K08
56 div23 8K4408K4=84K
57 55 24 51 56 syl3anc K08K4=84K
58 17 oveq1i 84=424
59 22 20 49 divcan3i 424=2
60 58 59 eqtri 84=2
61 60 a1i K084=2
62 61 oveq1d K084K=2K
63 57 62 eqtrd K08K4=2K
64 63 oveq1d K08K4+54=2K+54
65 53 64 eqtrd K08K+54=2K+54
66 65 fveq2d K08K+54=2K+54
67 1lt4 1<4
68 2nn0 20
69 68 a1i K020
70 69 9 nn0mulcld K02K0
71 70 nn0zd K02K
72 71 peano2zd K02K+1
73 1nn0 10
74 73 a1i K010
75 4nn 4
76 75 a1i K04
77 adddivflid 2K+11041<42K+1+14=2K+1
78 72 74 76 77 syl3anc K01<42K+1+14=2K+1
79 23 24 mulcld K02K
80 49 a1i K040
81 21 80 reccld K014
82 79 14 81 addassd K02K+1+14=2K+1+14
83 df-5 5=4+1
84 83 oveq1i 54=4+14
85 ax-1cn 1
86 20 85 20 49 divdiri 4+14=44+14
87 20 49 dividi 44=1
88 87 oveq1i 44+14=1+14
89 84 86 88 3eqtri 54=1+14
90 89 a1i K054=1+14
91 90 eqcomd K01+14=54
92 91 oveq2d K02K+1+14=2K+54
93 82 92 eqtrd K02K+1+14=2K+54
94 93 fveqeq2d K02K+1+14=2K+12K+54=2K+1
95 78 94 bitrd K01<42K+54=2K+1
96 67 95 mpbii K02K+54=2K+1
97 66 96 eqtrd K08K+54=2K+1
98 48 97 oveq12d K08K+5-128K+54=4K+2-2K+1
99 70 nn0cnd K02K
100 35 23 99 14 addsub4d K04K+2-2K+1=4K2K+2-1
101 2t2e4 22=4
102 101 eqcomi 4=22
103 102 a1i K04=22
104 103 oveq1d K04K=22K
105 23 23 24 mulassd K022K=22K
106 104 105 eqtrd K04K=22K
107 106 oveq1d K04K2K=22K2K
108 2txmxeqx 2K22K2K=2K
109 99 108 syl K022K2K=2K
110 107 109 eqtrd K04K2K=2K
111 2m1e1 21=1
112 111 a1i K021=1
113 110 112 oveq12d K04K2K+2-1=2K+1
114 98 100 113 3eqtrd K08K+5-128K+54=2K+1
115 6 114 sylan9eqr K0P=8K+5N=2K+1