| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3oalem1.1 |  | 
						
							| 2 |  | 3oalem1.2 |  | 
						
							| 3 |  | 3oalem1.3 |  | 
						
							| 4 |  | 3oalem1.4 |  | 
						
							| 5 |  | simplll |  | 
						
							| 6 |  | simpllr |  | 
						
							| 7 | 1 2 3 4 | 3oalem1 |  | 
						
							| 8 |  | hvaddsub12 |  | 
						
							| 9 | 8 | 3anidm23 |  | 
						
							| 10 |  | hvsubid |  | 
						
							| 11 | 10 | oveq2d |  | 
						
							| 12 |  | ax-hvaddid |  | 
						
							| 13 | 11 12 | sylan9eqr |  | 
						
							| 14 | 9 13 | eqtr3d |  | 
						
							| 15 | 14 | ad2ant2l |  | 
						
							| 16 | 15 | adantlr |  | 
						
							| 17 | 7 16 | syl |  | 
						
							| 18 |  | simprlr |  | 
						
							| 19 |  | eqtr2 |  | 
						
							| 20 | 19 | oveq1d |  | 
						
							| 21 | 20 | ad2ant2l |  | 
						
							| 22 |  | simpl |  | 
						
							| 23 | 22 | anim1i |  | 
						
							| 24 |  | hvsub4 |  | 
						
							| 25 | 23 24 | syldan |  | 
						
							| 26 |  | hvsubid |  | 
						
							| 27 | 26 | ad2antrr |  | 
						
							| 28 | 27 | oveq1d |  | 
						
							| 29 |  | hvsubcl |  | 
						
							| 30 |  | hvaddlid |  | 
						
							| 31 | 29 30 | syl |  | 
						
							| 32 | 31 | adantll |  | 
						
							| 33 | 25 28 32 | 3eqtrd |  | 
						
							| 34 | 33 | ad2ant2rl |  | 
						
							| 35 | 7 34 | syl |  | 
						
							| 36 |  | simpr |  | 
						
							| 37 |  | simpr |  | 
						
							| 38 | 37 | anim2i |  | 
						
							| 39 |  | hvsub4 |  | 
						
							| 40 | 36 38 39 | syl2anc |  | 
						
							| 41 | 10 | ad2antll |  | 
						
							| 42 | 41 | oveq2d |  | 
						
							| 43 |  | hvsubcl |  | 
						
							| 44 |  | ax-hvaddid |  | 
						
							| 45 | 43 44 | syl |  | 
						
							| 46 | 45 | ancoms |  | 
						
							| 47 | 46 | adantrr |  | 
						
							| 48 | 40 42 47 | 3eqtrd |  | 
						
							| 49 | 48 | adantlr |  | 
						
							| 50 | 49 | adantlr |  | 
						
							| 51 | 7 50 | syl |  | 
						
							| 52 | 21 35 51 | 3eqtr3d |  | 
						
							| 53 |  | simpll |  | 
						
							| 54 |  | simpll |  | 
						
							| 55 | 2 | chshii |  | 
						
							| 56 | 1 | chshii |  | 
						
							| 57 | 55 56 | shsvsi |  | 
						
							| 58 | 57 | ancoms |  | 
						
							| 59 | 56 55 | shscomi |  | 
						
							| 60 | 58 59 | eleqtrrdi |  | 
						
							| 61 | 53 54 60 | syl2an |  | 
						
							| 62 | 52 61 | eqeltrd |  | 
						
							| 63 |  | simplr |  | 
						
							| 64 |  | simplr |  | 
						
							| 65 | 3 | chshii |  | 
						
							| 66 | 4 | chshii |  | 
						
							| 67 | 65 66 | shsvsi |  | 
						
							| 68 | 63 64 67 | syl2an |  | 
						
							| 69 | 62 68 | elind |  | 
						
							| 70 | 56 55 | shscli |  | 
						
							| 71 | 65 66 | shscli |  | 
						
							| 72 | 70 71 | shincli |  | 
						
							| 73 | 66 72 | shsvai |  | 
						
							| 74 | 18 69 73 | syl2anc |  | 
						
							| 75 | 17 74 | eqeltrrd |  | 
						
							| 76 | 6 75 | elind |  | 
						
							| 77 | 66 72 | shscli |  | 
						
							| 78 | 65 77 | shincli |  | 
						
							| 79 | 56 78 | shsvai |  | 
						
							| 80 | 5 76 79 | syl2anc |  | 
						
							| 81 |  | eleq1 |  | 
						
							| 82 | 81 | ad2antlr |  | 
						
							| 83 | 80 82 | mpbird |  |