Metamath Proof Explorer


Theorem 3oalem2

Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses 3oalem1.1 BC
3oalem1.2 CC
3oalem1.3 RC
3oalem1.4 SC
Assertion 3oalem2 xByRv=x+yzCwSv=z+wvB+RS+B+CR+S

Proof

Step Hyp Ref Expression
1 3oalem1.1 BC
2 3oalem1.2 CC
3 3oalem1.3 RC
4 3oalem1.4 SC
5 simplll xByRv=x+yzCwSv=z+wxB
6 simpllr xByRv=x+yzCwSv=z+wyR
7 1 2 3 4 3oalem1 xByRv=x+yzCwSv=z+wxyvzw
8 hvaddsub12 ywwy+w-w=w+y-w
9 8 3anidm23 ywy+w-w=w+y-w
10 hvsubid ww-w=0
11 10 oveq2d wy+w-w=y+0
12 ax-hvaddid yy+0=y
13 11 12 sylan9eqr ywy+w-w=y
14 9 13 eqtr3d yww+y-w=y
15 14 ad2ant2l xyzww+y-w=y
16 15 adantlr xyvzww+y-w=y
17 7 16 syl xByRv=x+yzCwSv=z+ww+y-w=y
18 simprlr xByRv=x+yzCwSv=z+wwS
19 eqtr2 v=x+yv=z+wx+y=z+w
20 19 oveq1d v=x+yv=z+wx+y-x+w=z+w-x+w
21 20 ad2ant2l xByRv=x+yzCwSv=z+wx+y-x+w=z+w-x+w
22 simpl xyx
23 22 anim1i xywxw
24 hvsub4 xyxwx+y-x+w=x-x+y-w
25 23 24 syldan xywx+y-x+w=x-x+y-w
26 hvsubid xx-x=0
27 26 ad2antrr xywx-x=0
28 27 oveq1d xywx-x+y-w=0+y-w
29 hvsubcl ywy-w
30 hvaddlid y-w0+y-w=y-w
31 29 30 syl yw0+y-w=y-w
32 31 adantll xyw0+y-w=y-w
33 25 28 32 3eqtrd xywx+y-x+w=y-w
34 33 ad2ant2rl xyvzwx+y-x+w=y-w
35 7 34 syl xByRv=x+yzCwSv=z+wx+y-x+w=y-w
36 simpr xzwzw
37 simpr zww
38 37 anim2i xzwxw
39 hvsub4 zwxwz+w-x+w=z-x+w-w
40 36 38 39 syl2anc xzwz+w-x+w=z-x+w-w
41 10 ad2antll xzww-w=0
42 41 oveq2d xzwz-x+w-w=z-x+0
43 hvsubcl zxz-x
44 ax-hvaddid z-xz-x+0=z-x
45 43 44 syl zxz-x+0=z-x
46 45 ancoms xzz-x+0=z-x
47 46 adantrr xzwz-x+0=z-x
48 40 42 47 3eqtrd xzwz+w-x+w=z-x
49 48 adantlr xyzwz+w-x+w=z-x
50 49 adantlr xyvzwz+w-x+w=z-x
51 7 50 syl xByRv=x+yzCwSv=z+wz+w-x+w=z-x
52 21 35 51 3eqtr3d xByRv=x+yzCwSv=z+wy-w=z-x
53 simpll xByRv=x+yxB
54 simpll zCwSv=z+wzC
55 2 chshii CS
56 1 chshii BS
57 55 56 shsvsi zCxBz-xC+B
58 57 ancoms xBzCz-xC+B
59 56 55 shscomi B+C=C+B
60 58 59 eleqtrrdi xBzCz-xB+C
61 53 54 60 syl2an xByRv=x+yzCwSv=z+wz-xB+C
62 52 61 eqeltrd xByRv=x+yzCwSv=z+wy-wB+C
63 simplr xByRv=x+yyR
64 simplr zCwSv=z+wwS
65 3 chshii RS
66 4 chshii SS
67 65 66 shsvsi yRwSy-wR+S
68 63 64 67 syl2an xByRv=x+yzCwSv=z+wy-wR+S
69 62 68 elind xByRv=x+yzCwSv=z+wy-wB+CR+S
70 56 55 shscli B+CS
71 65 66 shscli R+SS
72 70 71 shincli B+CR+SS
73 66 72 shsvai wSy-wB+CR+Sw+y-wS+B+CR+S
74 18 69 73 syl2anc xByRv=x+yzCwSv=z+ww+y-wS+B+CR+S
75 17 74 eqeltrrd xByRv=x+yzCwSv=z+wyS+B+CR+S
76 6 75 elind xByRv=x+yzCwSv=z+wyRS+B+CR+S
77 66 72 shscli S+B+CR+SS
78 65 77 shincli RS+B+CR+SS
79 56 78 shsvai xByRS+B+CR+Sx+yB+RS+B+CR+S
80 5 76 79 syl2anc xByRv=x+yzCwSv=z+wx+yB+RS+B+CR+S
81 eleq1 v=x+yvB+RS+B+CR+Sx+yB+RS+B+CR+S
82 81 ad2antlr xByRv=x+yzCwSv=z+wvB+RS+B+CR+Sx+yB+RS+B+CR+S
83 80 82 mpbird xByRv=x+yzCwSv=z+wvB+RS+B+CR+S