Metamath Proof Explorer


Theorem 4atexlemcnd

Description: Lemma for 4atexlem7 . (Contributed by NM, 24-Nov-2012)

Ref Expression
Hypotheses 4thatlem.ph φKHLWHPA¬P˙WQA¬Q˙WSARA¬R˙WP˙R=Q˙RTAU˙T=V˙TPQ¬S˙P˙Q
4thatlem0.l ˙=K
4thatlem0.j ˙=joinK
4thatlem0.m ˙=meetK
4thatlem0.a A=AtomsK
4thatlem0.h H=LHypK
4thatlem0.u U=P˙Q˙W
4thatlem0.v V=P˙S˙W
4thatlem0.c C=Q˙T˙P˙S
4thatlem0.d D=R˙T˙P˙S
Assertion 4atexlemcnd φCD

Proof

Step Hyp Ref Expression
1 4thatlem.ph φKHLWHPA¬P˙WQA¬Q˙WSARA¬R˙WP˙R=Q˙RTAU˙T=V˙TPQ¬S˙P˙Q
2 4thatlem0.l ˙=K
3 4thatlem0.j ˙=joinK
4 4thatlem0.m ˙=meetK
5 4thatlem0.a A=AtomsK
6 4thatlem0.h H=LHypK
7 4thatlem0.u U=P˙Q˙W
8 4thatlem0.v V=P˙S˙W
9 4thatlem0.c C=Q˙T˙P˙S
10 4thatlem0.d D=R˙T˙P˙S
11 1 2 3 4 5 6 7 8 4atexlemtlw φT˙W
12 1 2 3 4 5 6 7 8 9 4atexlemnclw φ¬C˙W
13 nbrne2 T˙W¬C˙WTC
14 11 12 13 syl2anc φTC
15 1 4atexlemk φKHL
16 1 4atexlemq φQA
17 1 4atexlemt φTA
18 3 5 hlatjcom KHLQATAQ˙T=T˙Q
19 15 16 17 18 syl3anc φQ˙T=T˙Q
20 simp221 KHLWHPA¬P˙WQA¬Q˙WSARA¬R˙WP˙R=Q˙RTAU˙T=V˙TPQ¬S˙P˙QRA
21 1 20 sylbi φRA
22 3 5 hlatjcom KHLRATAR˙T=T˙R
23 15 21 17 22 syl3anc φR˙T=T˙R
24 19 23 oveq12d φQ˙T˙R˙T=T˙Q˙T˙R
25 1 4atexlemkc φKCvLat
26 1 4atexlemp φPA
27 1 4atexlempnq φPQ
28 simp223 KHLWHPA¬P˙WQA¬Q˙WSARA¬R˙WP˙R=Q˙RTAU˙T=V˙TPQ¬S˙P˙QP˙R=Q˙R
29 1 28 sylbi φP˙R=Q˙R
30 5 3 cvlsupr6 KCvLatPAQARAPQP˙R=Q˙RRQ
31 30 necomd KCvLatPAQARAPQP˙R=Q˙RQR
32 25 26 16 21 27 29 31 syl132anc φQR
33 1 2 3 4 5 6 7 8 4atexlemntlpq φ¬T˙P˙Q
34 5 3 cvlsupr7 KCvLatPAQARAPQP˙R=Q˙RP˙Q=R˙Q
35 25 26 16 21 27 29 34 syl132anc φP˙Q=R˙Q
36 3 5 hlatjcom KHLQARAQ˙R=R˙Q
37 15 16 21 36 syl3anc φQ˙R=R˙Q
38 35 37 eqtr4d φP˙Q=Q˙R
39 38 breq2d φT˙P˙QT˙Q˙R
40 33 39 mtbid φ¬T˙Q˙R
41 2 3 4 5 2llnma2 KHLQARATAQR¬T˙Q˙RT˙Q˙T˙R=T
42 15 16 21 17 32 40 41 syl132anc φT˙Q˙T˙R=T
43 24 42 eqtr2d φT=Q˙T˙R˙T
44 43 adantr φC=DT=Q˙T˙R˙T
45 1 4atexlemkl φKLat
46 1 3 5 4atexlemqtb φQ˙TBaseK
47 1 3 5 4atexlempsb φP˙SBaseK
48 eqid BaseK=BaseK
49 48 2 4 latmle1 KLatQ˙TBaseKP˙SBaseKQ˙T˙P˙S˙Q˙T
50 45 46 47 49 syl3anc φQ˙T˙P˙S˙Q˙T
51 9 50 eqbrtrid φC˙Q˙T
52 51 adantr φC=DC˙Q˙T
53 simpr φC=DC=D
54 48 3 5 hlatjcl KHLRATAR˙TBaseK
55 15 21 17 54 syl3anc φR˙TBaseK
56 48 2 4 latmle1 KLatR˙TBaseKP˙SBaseKR˙T˙P˙S˙R˙T
57 45 55 47 56 syl3anc φR˙T˙P˙S˙R˙T
58 10 57 eqbrtrid φD˙R˙T
59 58 adantr φC=DD˙R˙T
60 53 59 eqbrtrd φC=DC˙R˙T
61 1 2 3 4 5 6 7 8 9 4atexlemc φCA
62 48 5 atbase CACBaseK
63 61 62 syl φCBaseK
64 48 2 4 latlem12 KLatCBaseKQ˙TBaseKR˙TBaseKC˙Q˙TC˙R˙TC˙Q˙T˙R˙T
65 45 63 46 55 64 syl13anc φC˙Q˙TC˙R˙TC˙Q˙T˙R˙T
66 65 adantr φC=DC˙Q˙TC˙R˙TC˙Q˙T˙R˙T
67 52 60 66 mpbi2and φC=DC˙Q˙T˙R˙T
68 hlatl KHLKAtLat
69 15 68 syl φKAtLat
70 43 17 eqeltrrd φQ˙T˙R˙TA
71 2 5 atcmp KAtLatCAQ˙T˙R˙TAC˙Q˙T˙R˙TC=Q˙T˙R˙T
72 69 61 70 71 syl3anc φC˙Q˙T˙R˙TC=Q˙T˙R˙T
73 72 adantr φC=DC˙Q˙T˙R˙TC=Q˙T˙R˙T
74 67 73 mpbid φC=DC=Q˙T˙R˙T
75 44 74 eqtr4d φC=DT=C
76 75 ex φC=DT=C
77 76 necon3d φTCCD
78 14 77 mpd φCD