Description: Lemma for ackbij1 . (Contributed by Stefan O'Rear, 19-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ackbij.f | |
|
Assertion | ackbij1lem9 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ackbij.f | |
|
2 | elinel2 | |
|
3 | 2 | 3ad2ant1 | |
4 | snfi | |
|
5 | elinel1 | |
|
6 | 5 | elpwid | |
7 | 6 | 3ad2ant1 | |
8 | onfin2 | |
|
9 | inss2 | |
|
10 | 8 9 | eqsstri | |
11 | 7 10 | sstrdi | |
12 | 11 | sselda | |
13 | pwfi | |
|
14 | 12 13 | sylib | |
15 | xpfi | |
|
16 | 4 14 15 | sylancr | |
17 | 16 | ralrimiva | |
18 | iunfi | |
|
19 | 3 17 18 | syl2anc | |
20 | ficardid | |
|
21 | 19 20 | syl | |
22 | elinel2 | |
|
23 | 22 | 3ad2ant2 | |
24 | elinel1 | |
|
25 | 24 | elpwid | |
26 | 25 | 3ad2ant2 | |
27 | 26 10 | sstrdi | |
28 | 27 | sselda | |
29 | 28 13 | sylib | |
30 | 4 29 15 | sylancr | |
31 | 30 | ralrimiva | |
32 | iunfi | |
|
33 | 23 31 32 | syl2anc | |
34 | ficardid | |
|
35 | 33 34 | syl | |
36 | djuen | |
|
37 | 21 35 36 | syl2anc | |
38 | djudisj | |
|
39 | 38 | 3ad2ant3 | |
40 | endjudisj | |
|
41 | 19 33 39 40 | syl3anc | |
42 | iunxun | |
|
43 | 41 42 | breqtrrdi | |
44 | entr | |
|
45 | 37 43 44 | syl2anc | |
46 | carden2b | |
|
47 | 45 46 | syl | |
48 | ficardom | |
|
49 | 19 48 | syl | |
50 | ficardom | |
|
51 | 33 50 | syl | |
52 | nnadju | |
|
53 | 49 51 52 | syl2anc | |
54 | 47 53 | eqtr3d | |
55 | ackbij1lem6 | |
|
56 | 55 | 3adant3 | |
57 | 1 | ackbij1lem7 | |
58 | 56 57 | syl | |
59 | 1 | ackbij1lem7 | |
60 | 1 | ackbij1lem7 | |
61 | 59 60 | oveqan12d | |
62 | 61 | 3adant3 | |
63 | 54 58 62 | 3eqtr4d | |