Metamath Proof Explorer


Theorem acopyeu

Description: Angle construction. Theorem 11.15 of Schwabhauser p. 98. This is Hilbert's axiom III.4 for geometry. Akin to a uniqueness theorem, this states that if two points X and Y both fulfill the conditions, then they are on the same half-line. (Contributed by Thierry Arnoux, 9-Aug-2020)

Ref Expression
Hypotheses dfcgra2.p P=BaseG
dfcgra2.i I=ItvG
dfcgra2.m -˙=distG
dfcgra2.g φG𝒢Tarski
dfcgra2.a φAP
dfcgra2.b φBP
dfcgra2.c φCP
dfcgra2.d φDP
dfcgra2.e φEP
dfcgra2.f φFP
acopy.l L=Line𝒢G
acopy.1 φ¬ABLCB=C
acopy.2 φ¬DELFE=F
acopyeu.x φXP
acopyeu.y φYP
acopyeu.k K=hl𝒢G
acopyeu.1 φ⟨“ABC”⟩𝒢G⟨“DEX”⟩
acopyeu.2 φ⟨“ABC”⟩𝒢G⟨“DEY”⟩
acopyeu.3 φXhp𝒢GDLEF
acopyeu.4 φYhp𝒢GDLEF
Assertion acopyeu φXKEY

Proof

Step Hyp Ref Expression
1 dfcgra2.p P=BaseG
2 dfcgra2.i I=ItvG
3 dfcgra2.m -˙=distG
4 dfcgra2.g φG𝒢Tarski
5 dfcgra2.a φAP
6 dfcgra2.b φBP
7 dfcgra2.c φCP
8 dfcgra2.d φDP
9 dfcgra2.e φEP
10 dfcgra2.f φFP
11 acopy.l L=Line𝒢G
12 acopy.1 φ¬ABLCB=C
13 acopy.2 φ¬DELFE=F
14 acopyeu.x φXP
15 acopyeu.y φYP
16 acopyeu.k K=hl𝒢G
17 acopyeu.1 φ⟨“ABC”⟩𝒢G⟨“DEX”⟩
18 acopyeu.2 φ⟨“ABC”⟩𝒢G⟨“DEY”⟩
19 acopyeu.3 φXhp𝒢GDLEF
20 acopyeu.4 φYhp𝒢GDLEF
21 14 ad2antrr φdPdKEDE-˙d=B-˙AXP
22 21 ad3antrrr φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEYXP
23 simplr φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEYyP
24 15 ad2antrr φdPdKEDE-˙d=B-˙AYP
25 24 ad3antrrr φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEYYP
26 4 ad2antrr φdPdKEDE-˙d=B-˙AG𝒢Tarski
27 26 ad3antrrr φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEYG𝒢Tarski
28 9 ad2antrr φdPdKEDE-˙d=B-˙AEP
29 28 ad3antrrr φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEYEP
30 5 ad2antrr φdPdKEDE-˙d=B-˙AAP
31 30 ad3antrrr φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEYAP
32 6 ad2antrr φdPdKEDE-˙d=B-˙ABP
33 32 ad3antrrr φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEYBP
34 7 ad2antrr φdPdKEDE-˙d=B-˙ACP
35 34 ad3antrrr φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEYCP
36 simplr φdPdKEDE-˙d=B-˙AdP
37 36 ad3antrrr φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEYdP
38 10 ad2antrr φdPdKEDE-˙d=B-˙AFP
39 38 ad3antrrr φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEYFP
40 12 ad2antrr φdPdKEDE-˙d=B-˙A¬ABLCB=C
41 40 ad3antrrr φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEY¬ABLCB=C
42 8 ad2antrr φdPdKEDE-˙d=B-˙ADP
43 13 ad2antrr φdPdKEDE-˙d=B-˙A¬DELFE=F
44 simprl φdPdKEDE-˙d=B-˙AdKED
45 1 2 16 36 42 28 26 11 44 hlln φdPdKEDE-˙d=B-˙AdDLE
46 1 2 16 36 42 28 26 44 hlne1 φdPdKEDE-˙d=B-˙AdE
47 1 2 11 26 42 28 38 36 43 45 46 ncolncol φdPdKEDE-˙d=B-˙A¬dELFE=F
48 47 ad3antrrr φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEY¬dELFE=F
49 simprr φdPdKEDE-˙d=B-˙AE-˙d=B-˙A
50 1 3 2 26 28 36 32 30 49 tgcgrcomlr φdPdKEDE-˙d=B-˙Ad-˙E=A-˙B
51 50 eqcomd φdPdKEDE-˙d=B-˙AA-˙B=d-˙E
52 51 ad3antrrr φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEYA-˙B=d-˙E
53 simpl u=av=bu=a
54 53 eleq1d u=av=buPdLEaPdLE
55 simpr u=av=bv=b
56 55 eleq1d u=av=bvPdLEbPdLE
57 54 56 anbi12d u=av=buPdLEvPdLEaPdLEbPdLE
58 simpr u=av=bw=tw=t
59 simpll u=av=bw=tu=a
60 simplr u=av=bw=tv=b
61 59 60 oveq12d u=av=bw=tuIv=aIb
62 58 61 eleq12d u=av=bw=twuIvtaIb
63 62 cbvrexdva u=av=bwdLEwuIvtdLEtaIb
64 57 63 anbi12d u=av=buPdLEvPdLEwdLEwuIvaPdLEbPdLEtdLEtaIb
65 64 cbvopabv uv|uPdLEvPdLEwdLEwuIv=ab|aPdLEbPdLEtdLEtaIb
66 simpllr φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEYxP
67 simprll φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEY⟨“ABC”⟩𝒢G⟨“dEx”⟩
68 simprrl φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEY⟨“ABC”⟩𝒢G⟨“dEy”⟩
69 1 2 11 26 36 28 46 tgelrnln φdPdKEDE-˙d=B-˙AdLEranL
70 69 ad3antrrr φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEYdLEranL
71 1 2 11 26 36 28 46 tglinerflx2 φdPdKEDE-˙d=B-˙AEdLE
72 71 ad3antrrr φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEYEdLE
73 42 ad3antrrr φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEYDP
74 1 11 2 4 6 7 5 12 ncolrot2 φ¬CALBA=B
75 1 2 3 4 5 6 7 8 9 14 17 11 74 cgrancol φ¬XDLED=E
76 1 11 2 4 8 9 14 75 ncolcom φ¬XELDE=D
77 76 ad5antr φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEY¬XELDE=D
78 simprlr φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEYxKEX
79 1 2 16 66 22 29 27 11 78 hlln φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEYxXLE
80 1 2 16 66 22 29 27 78 hlne1 φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEYxE
81 1 2 11 27 22 29 73 66 77 79 80 ncolncol φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEY¬xELDE=D
82 1 11 2 27 29 73 66 81 ncolcom φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEY¬xDLED=E
83 pm2.45 ¬xDLED=E¬xDLE
84 82 83 syl φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEY¬xDLE
85 1 2 11 4 8 9 10 13 ncolne1 φDE
86 1 2 11 4 8 9 85 tgelrnln φDLEranL
87 86 ad2antrr φdPdKEDE-˙d=B-˙ADLEranL
88 1 2 11 4 8 9 85 tglinerflx2 φEDLE
89 88 ad2antrr φdPdKEDE-˙d=B-˙AEDLE
90 1 2 11 26 36 28 46 46 87 45 89 tglinethru φdPdKEDE-˙d=B-˙ADLE=dLE
91 90 ad3antrrr φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEYDLE=dLE
92 84 91 neleqtrd φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEY¬xdLE
93 1 2 11 27 70 29 65 16 72 66 22 92 78 hphl φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEYxhp𝒢GdLEX
94 90 fveq2d φdPdKEDE-˙d=B-˙Ahp𝒢GDLE=hp𝒢GdLE
95 94 ad3antrrr φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEYhp𝒢GDLE=hp𝒢GdLE
96 19 ad5antr φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEYXhp𝒢GDLEF
97 95 96 breqdi φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEYXhp𝒢GdLEF
98 1 2 11 27 70 66 65 22 93 39 97 hpgtr φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEYxhp𝒢GdLEF
99 1 2 3 4 5 6 7 8 9 15 18 11 74 cgrancol φ¬YDLED=E
100 1 11 2 4 8 9 15 99 ncolcom φ¬YELDE=D
101 100 ad5antr φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEY¬YELDE=D
102 simprrr φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEYyKEY
103 1 2 16 23 25 29 27 11 102 hlln φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEYyYLE
104 1 2 16 23 25 29 27 102 hlne1 φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEYyE
105 1 2 11 27 25 29 73 23 101 103 104 ncolncol φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEY¬yELDE=D
106 1 11 2 27 29 73 23 105 ncolcom φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEY¬yDLED=E
107 pm2.45 ¬yDLED=E¬yDLE
108 106 107 syl φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEY¬yDLE
109 108 91 neleqtrd φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEY¬ydLE
110 1 2 11 27 70 29 65 16 72 23 25 109 102 hphl φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEYyhp𝒢GdLEY
111 20 ad5antr φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEYYhp𝒢GDLEF
112 95 111 breqdi φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEYYhp𝒢GdLEF
113 1 2 11 27 70 23 65 25 110 39 112 hpgtr φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEYyhp𝒢GdLEF
114 1 3 2 11 16 27 31 33 35 37 29 39 41 48 52 65 66 23 67 68 98 113 trgcopyeulem φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEYx=y
115 114 78 eqbrtrrd φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEYyKEX
116 1 2 16 23 22 29 27 115 hlcomd φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEYXKEy
117 1 2 16 22 23 25 27 29 116 102 hltr φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEYXKEY
118 17 ad2antrr φdPdKEDE-˙d=B-˙A⟨“ABC”⟩𝒢G⟨“DEX”⟩
119 1 2 16 26 30 32 34 42 28 21 118 36 44 cgrahl1 φdPdKEDE-˙d=B-˙A⟨“ABC”⟩𝒢G⟨“dEX”⟩
120 1 2 11 4 5 6 7 12 ncolne1 φAB
121 120 ad2antrr φdPdKEDE-˙d=B-˙AAB
122 1 2 16 26 30 32 34 36 28 21 3 121 51 iscgra1 φdPdKEDE-˙d=B-˙A⟨“ABC”⟩𝒢G⟨“dEX”⟩xP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX
123 119 122 mpbid φdPdKEDE-˙d=B-˙AxP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX
124 18 ad2antrr φdPdKEDE-˙d=B-˙A⟨“ABC”⟩𝒢G⟨“DEY”⟩
125 1 2 16 26 30 32 34 42 28 24 124 36 44 cgrahl1 φdPdKEDE-˙d=B-˙A⟨“ABC”⟩𝒢G⟨“dEY”⟩
126 1 2 16 26 30 32 34 36 28 24 3 121 51 iscgra1 φdPdKEDE-˙d=B-˙A⟨“ABC”⟩𝒢G⟨“dEY”⟩yP⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEY
127 125 126 mpbid φdPdKEDE-˙d=B-˙AyP⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEY
128 reeanv xPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEYxP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEXyP⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEY
129 123 127 128 sylanbrc φdPdKEDE-˙d=B-˙AxPyP⟨“ABC”⟩𝒢G⟨“dEx”⟩xKEX⟨“ABC”⟩𝒢G⟨“dEy”⟩yKEY
130 117 129 r19.29vva φdPdKEDE-˙d=B-˙AXKEY
131 120 necomd φBA
132 1 2 16 9 6 5 4 8 3 85 131 hlcgrex φdPdKEDE-˙d=B-˙A
133 130 132 r19.29a φXKEY