Metamath Proof Explorer


Theorem addsproplem6

Description: Lemma for surreal addition properties. Finally, we show the second half of the induction hypothesis when Y and Z are the same age. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Hypotheses addsproplem.1 φ x No y No z No bday x + bday y bday x + bday z bday X + bday Y bday X + bday Z x + s y No y < s z y + s x < s z + s x
addspropord.2 φ X No
addspropord.3 φ Y No
addspropord.4 φ Z No
addspropord.5 φ Y < s Z
addsproplem6.6 φ bday Y = bday Z
Assertion addsproplem6 φ Y + s X < s Z + s X

Proof

Step Hyp Ref Expression
1 addsproplem.1 φ x No y No z No bday x + bday y bday x + bday z bday X + bday Y bday X + bday Z x + s y No y < s z y + s x < s z + s x
2 addspropord.2 φ X No
3 addspropord.3 φ Y No
4 addspropord.4 φ Z No
5 addspropord.5 φ Y < s Z
6 addsproplem6.6 φ bday Y = bday Z
7 nodense Y No Z No bday Y = bday Z Y < s Z m No bday m bday Y Y < s m m < s Z
8 3 4 6 5 7 syl22anc φ m No bday m bday Y Y < s m m < s Z
9 1 2 3 addsproplem3 φ X + s Y No a | b L X a = b + s Y c | d L Y c = X + s d s X + s Y X + s Y s e | f R X e = f + s Y g | h R Y g = X + s h
10 9 simp1d φ X + s Y No
11 10 adantr φ m No bday m bday Y Y < s m m < s Z X + s Y No
12 1 adantr φ m No bday m bday Y Y < s m m < s Z x No y No z No bday x + bday y bday x + bday z bday X + bday Y bday X + bday Z x + s y No y < s z y + s x < s z + s x
13 2 adantr φ m No bday m bday Y Y < s m m < s Z X No
14 simprl φ m No bday m bday Y Y < s m m < s Z m No
15 unidm bday X + bday m bday X + bday m = bday X + bday m
16 simprr1 φ m No bday m bday Y Y < s m m < s Z bday m bday Y
17 bdayelon bday m On
18 bdayelon bday Y On
19 bdayelon bday X On
20 naddel2 bday m On bday Y On bday X On bday m bday Y bday X + bday m bday X + bday Y
21 17 18 19 20 mp3an bday m bday Y bday X + bday m bday X + bday Y
22 16 21 sylib φ m No bday m bday Y Y < s m m < s Z bday X + bday m bday X + bday Y
23 elun1 bday X + bday m bday X + bday Y bday X + bday m bday X + bday Y bday X + bday Z
24 22 23 syl φ m No bday m bday Y Y < s m m < s Z bday X + bday m bday X + bday Y bday X + bday Z
25 15 24 eqeltrid φ m No bday m bday Y Y < s m m < s Z bday X + bday m bday X + bday m bday X + bday Y bday X + bday Z
26 12 13 14 14 25 addsproplem1 φ m No bday m bday Y Y < s m m < s Z X + s m No m < s m m + s X < s m + s X
27 26 simpld φ m No bday m bday Y Y < s m m < s Z X + s m No
28 uncom bday X + bday Y bday X + bday Z = bday X + bday Z bday X + bday Y
29 28 eleq2i bday x + bday y bday x + bday z bday X + bday Y bday X + bday Z bday x + bday y bday x + bday z bday X + bday Z bday X + bday Y
30 29 imbi1i bday x + bday y bday x + bday z bday X + bday Y bday X + bday Z x + s y No y < s z y + s x < s z + s x bday x + bday y bday x + bday z bday X + bday Z bday X + bday Y x + s y No y < s z y + s x < s z + s x
31 30 ralbii z No bday x + bday y bday x + bday z bday X + bday Y bday X + bday Z x + s y No y < s z y + s x < s z + s x z No bday x + bday y bday x + bday z bday X + bday Z bday X + bday Y x + s y No y < s z y + s x < s z + s x
32 31 2ralbii x No y No z No bday x + bday y bday x + bday z bday X + bday Y bday X + bday Z x + s y No y < s z y + s x < s z + s x x No y No z No bday x + bday y bday x + bday z bday X + bday Z bday X + bday Y x + s y No y < s z y + s x < s z + s x
33 1 32 sylib φ x No y No z No bday x + bday y bday x + bday z bday X + bday Z bday X + bday Y x + s y No y < s z y + s x < s z + s x
34 33 2 4 addsproplem3 φ X + s Z No a | b L X a = b + s Z c | d L Z c = X + s d s X + s Z X + s Z s e | f R X e = f + s Z g | h R Z g = X + s h
35 34 simp1d φ X + s Z No
36 35 adantr φ m No bday m bday Y Y < s m m < s Z X + s Z No
37 9 simp3d φ X + s Y s e | f R X e = f + s Y g | h R Y g = X + s h
38 37 adantr φ m No bday m bday Y Y < s m m < s Z X + s Y s e | f R X e = f + s Y g | h R Y g = X + s h
39 ovex X + s Y V
40 39 snid X + s Y X + s Y
41 40 a1i φ m No bday m bday Y Y < s m m < s Z X + s Y X + s Y
42 oldbday bday Y On m No m Old bday Y bday m bday Y
43 18 14 42 sylancr φ m No bday m bday Y Y < s m m < s Z m Old bday Y bday m bday Y
44 16 43 mpbird φ m No bday m bday Y Y < s m m < s Z m Old bday Y
45 simprr2 φ m No bday m bday Y Y < s m m < s Z Y < s m
46 elright m R Y m Old bday Y Y < s m
47 44 45 46 sylanbrc φ m No bday m bday Y Y < s m m < s Z m R Y
48 eqid X + s m = X + s m
49 oveq2 h = m X + s h = X + s m
50 49 rspceeqv m R Y X + s m = X + s m h R Y X + s m = X + s h
51 47 48 50 sylancl φ m No bday m bday Y Y < s m m < s Z h R Y X + s m = X + s h
52 ovex X + s m V
53 eqeq1 g = X + s m g = X + s h X + s m = X + s h
54 53 rexbidv g = X + s m h R Y g = X + s h h R Y X + s m = X + s h
55 52 54 elab X + s m g | h R Y g = X + s h h R Y X + s m = X + s h
56 51 55 sylibr φ m No bday m bday Y Y < s m m < s Z X + s m g | h R Y g = X + s h
57 elun2 X + s m g | h R Y g = X + s h X + s m e | f R X e = f + s Y g | h R Y g = X + s h
58 56 57 syl φ m No bday m bday Y Y < s m m < s Z X + s m e | f R X e = f + s Y g | h R Y g = X + s h
59 38 41 58 ssltsepcd φ m No bday m bday Y Y < s m m < s Z X + s Y < s X + s m
60 33 adantr φ m No bday m bday Y Y < s m m < s Z x No y No z No bday x + bday y bday x + bday z bday X + bday Z bday X + bday Y x + s y No y < s z y + s x < s z + s x
61 4 adantr φ m No bday m bday Y Y < s m m < s Z Z No
62 60 13 61 addsproplem3 φ m No bday m bday Y Y < s m m < s Z X + s Z No a | b L X a = b + s Z c | d L Z c = X + s d s X + s Z X + s Z s e | f R X e = f + s Z g | h R Z g = X + s h
63 62 simp2d φ m No bday m bday Y Y < s m m < s Z a | b L X a = b + s Z c | d L Z c = X + s d s X + s Z
64 6 adantr φ m No bday m bday Y Y < s m m < s Z bday Y = bday Z
65 16 64 eleqtrd φ m No bday m bday Y Y < s m m < s Z bday m bday Z
66 bdayelon bday Z On
67 oldbday bday Z On m No m Old bday Z bday m bday Z
68 66 14 67 sylancr φ m No bday m bday Y Y < s m m < s Z m Old bday Z bday m bday Z
69 65 68 mpbird φ m No bday m bday Y Y < s m m < s Z m Old bday Z
70 simprr3 φ m No bday m bday Y Y < s m m < s Z m < s Z
71 elleft m L Z m Old bday Z m < s Z
72 69 70 71 sylanbrc φ m No bday m bday Y Y < s m m < s Z m L Z
73 oveq2 d = m X + s d = X + s m
74 73 rspceeqv m L Z X + s m = X + s m d L Z X + s m = X + s d
75 72 48 74 sylancl φ m No bday m bday Y Y < s m m < s Z d L Z X + s m = X + s d
76 eqeq1 c = X + s m c = X + s d X + s m = X + s d
77 76 rexbidv c = X + s m d L Z c = X + s d d L Z X + s m = X + s d
78 52 77 elab X + s m c | d L Z c = X + s d d L Z X + s m = X + s d
79 75 78 sylibr φ m No bday m bday Y Y < s m m < s Z X + s m c | d L Z c = X + s d
80 elun2 X + s m c | d L Z c = X + s d X + s m a | b L X a = b + s Z c | d L Z c = X + s d
81 79 80 syl φ m No bday m bday Y Y < s m m < s Z X + s m a | b L X a = b + s Z c | d L Z c = X + s d
82 ovex X + s Z V
83 82 snid X + s Z X + s Z
84 83 a1i φ m No bday m bday Y Y < s m m < s Z X + s Z X + s Z
85 63 81 84 ssltsepcd φ m No bday m bday Y Y < s m m < s Z X + s m < s X + s Z
86 11 27 36 59 85 slttrd φ m No bday m bday Y Y < s m m < s Z X + s Y < s X + s Z
87 8 86 rexlimddv φ X + s Y < s X + s Z
88 3 2 addscomd φ Y + s X = X + s Y
89 4 2 addscomd φ Z + s X = X + s Z
90 87 88 89 3brtr4d φ Y + s X < s Z + s X