Metamath Proof Explorer


Theorem angpieqvd

Description: The angle ABC is _pi iff B is a nontrivial convex combination of A and C , i.e., iff B is in the interior of the segment AC. (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses angpieqvd.angdef F=x0,y0logyx
angpieqvd.A φA
angpieqvd.B φB
angpieqvd.C φC
angpieqvd.AneB φAB
angpieqvd.BneC φBC
Assertion angpieqvd φABFCB=πw01B=wA+1wC

Proof

Step Hyp Ref Expression
1 angpieqvd.angdef F=x0,y0logyx
2 angpieqvd.A φA
3 angpieqvd.B φB
4 angpieqvd.C φC
5 angpieqvd.AneB φAB
6 angpieqvd.BneC φBC
7 1 2 3 4 5 6 angpieqvdlem2 φCBAB+ABFCB=π
8 7 biimpar φABFCB=πCBAB+
9 2 adantr φABFCB=πA
10 3 adantr φABFCB=πB
11 4 adantr φABFCB=πC
12 5 adantr φABFCB=πAB
13 1 2 3 4 5 6 angpined φABFCB=πAC
14 13 imp φABFCB=πAC
15 9 10 11 12 14 angpieqvdlem φABFCB=πCBAB+CBCA01
16 8 15 mpbid φABFCB=πCBCA01
17 4 3 subcld φCB
18 17 adantr φABFCB=πCB
19 4 2 subcld φCA
20 19 adantr φABFCB=πCA
21 14 necomd φABFCB=πCA
22 11 9 21 subne0d φABFCB=πCA0
23 18 20 22 divcan1d φABFCB=πCBCACA=CB
24 23 eqcomd φABFCB=πCB=CBCACA
25 18 20 22 divcld φABFCB=πCBCA
26 9 10 11 25 affineequiv φABFCB=πB=CBCAA+1CBCACCB=CBCACA
27 24 26 mpbird φABFCB=πB=CBCAA+1CBCAC
28 oveq1 w=CBCAwA=CBCAA
29 oveq2 w=CBCA1w=1CBCA
30 29 oveq1d w=CBCA1wC=1CBCAC
31 28 30 oveq12d w=CBCAwA+1wC=CBCAA+1CBCAC
32 31 rspceeqv CBCA01B=CBCAA+1CBCACw01B=wA+1wC
33 16 27 32 syl2anc φABFCB=πw01B=wA+1wC
34 33 ex φABFCB=πw01B=wA+1wC
35 2 adantr φw01A
36 3 adantr φw01B
37 4 adantr φw01C
38 simpr φw01w01
39 elioore w01w
40 recn ww
41 38 39 40 3syl φw01w
42 35 36 37 41 affineequiv φw01B=wA+1wCCB=wCA
43 simp3 φw01CB=wCACB=wCA
44 17 3ad2ant1 φw01CB=wCACB
45 41 3adant3 φw01CB=wCAw
46 19 3ad2ant1 φw01CB=wCACA
47 6 necomd φCB
48 4 3 47 subne0d φCB0
49 48 3ad2ant1 φw01CB=wCACB0
50 43 49 eqnetrrd φw01CB=wCAwCA0
51 45 46 50 mulne0bbd φw01CB=wCACA0
52 44 45 46 51 divmul3d φw01CB=wCACBCA=wCB=wCA
53 43 52 mpbird φw01CB=wCACBCA=w
54 simp2 φw01CB=wCAw01
55 53 54 eqeltrd φw01CB=wCACBCA01
56 2 3ad2ant1 φw01CB=wCAA
57 3 3ad2ant1 φw01CB=wCAB
58 4 3ad2ant1 φw01CB=wCAC
59 5 3ad2ant1 φw01CB=wCAAB
60 58 56 51 subne0ad φw01CB=wCACA
61 60 necomd φw01CB=wCAAC
62 56 57 58 59 61 angpieqvdlem φw01CB=wCACBAB+CBCA01
63 55 62 mpbird φw01CB=wCACBAB+
64 6 3ad2ant1 φw01CB=wCABC
65 1 56 57 58 59 64 angpieqvdlem2 φw01CB=wCACBAB+ABFCB=π
66 63 65 mpbid φw01CB=wCAABFCB=π
67 66 3expia φw01CB=wCAABFCB=π
68 42 67 sylbid φw01B=wA+1wCABFCB=π
69 68 rexlimdva φw01B=wA+1wCABFCB=π
70 34 69 impbid φABFCB=πw01B=wA+1wC