Metamath Proof Explorer


Theorem archiabllem2a

Description: Lemma for archiabl , which requires the group to be both left- and right-ordered. (Contributed by Thierry Arnoux, 13-Apr-2018)

Ref Expression
Hypotheses archiabllem.b B=BaseW
archiabllem.0 0˙=0W
archiabllem.e ˙=W
archiabllem.t <˙=<W
archiabllem.m ·˙=W
archiabllem.g φWoGrp
archiabllem.a φWArchi
archiabllem2.1 +˙=+W
archiabllem2.2 φopp𝑔WoGrp
archiabllem2.3 φaB0˙<˙abB0˙<˙bb<˙a
archiabllem2a.4 φXB
archiabllem2a.5 φ0˙<˙X
Assertion archiabllem2a φcB0˙<˙cc+˙c˙X

Proof

Step Hyp Ref Expression
1 archiabllem.b B=BaseW
2 archiabllem.0 0˙=0W
3 archiabllem.e ˙=W
4 archiabllem.t <˙=<W
5 archiabllem.m ·˙=W
6 archiabllem.g φWoGrp
7 archiabllem.a φWArchi
8 archiabllem2.1 +˙=+W
9 archiabllem2.2 φopp𝑔WoGrp
10 archiabllem2.3 φaB0˙<˙abB0˙<˙bb<˙a
11 archiabllem2a.4 φXB
12 archiabllem2a.5 φ0˙<˙X
13 simpllr φbB0˙<˙bb<˙Xb+˙b˙XbB
14 simplrl φbB0˙<˙bb<˙Xb+˙b˙X0˙<˙b
15 simpr φbB0˙<˙bb<˙Xb+˙b˙Xb+˙b˙X
16 breq2 c=b0˙<˙c0˙<˙b
17 id c=bc=b
18 17 17 oveq12d c=bc+˙c=b+˙b
19 18 breq1d c=bc+˙c˙Xb+˙b˙X
20 16 19 anbi12d c=b0˙<˙cc+˙c˙X0˙<˙bb+˙b˙X
21 20 rspcev bB0˙<˙bb+˙b˙XcB0˙<˙cc+˙c˙X
22 13 14 15 21 syl12anc φbB0˙<˙bb<˙Xb+˙b˙XcB0˙<˙cc+˙c˙X
23 simplll φbB0˙<˙bb<˙XX<˙b+˙bφ
24 ogrpgrp WoGrpWGrp
25 23 6 24 3syl φbB0˙<˙bb<˙XX<˙b+˙bWGrp
26 23 11 syl φbB0˙<˙bb<˙XX<˙b+˙bXB
27 simpllr φbB0˙<˙bb<˙XX<˙b+˙bbB
28 eqid -W=-W
29 1 28 grpsubcl WGrpXBbBX-WbB
30 25 26 27 29 syl3anc φbB0˙<˙bb<˙XX<˙b+˙bX-WbB
31 1 2 28 grpsubid WGrpbBb-Wb=0˙
32 25 27 31 syl2anc φbB0˙<˙bb<˙XX<˙b+˙bb-Wb=0˙
33 23 6 syl φbB0˙<˙bb<˙XX<˙b+˙bWoGrp
34 simplrr φbB0˙<˙bb<˙XX<˙b+˙bb<˙X
35 1 4 28 ogrpsublt WoGrpbBXBbBb<˙Xb-Wb<˙X-Wb
36 33 27 26 27 34 35 syl131anc φbB0˙<˙bb<˙XX<˙b+˙bb-Wb<˙X-Wb
37 32 36 eqbrtrrd φbB0˙<˙bb<˙XX<˙b+˙b0˙<˙X-Wb
38 23 9 syl φbB0˙<˙bb<˙XX<˙b+˙bopp𝑔WoGrp
39 1 8 grpcl WGrpbBbBb+˙bB
40 25 27 27 39 syl3anc φbB0˙<˙bb<˙XX<˙b+˙bb+˙bB
41 simpr φbB0˙<˙bb<˙XX<˙b+˙bX<˙b+˙b
42 1 4 28 ogrpsublt WoGrpXBb+˙bBbBX<˙b+˙bX-Wb<˙b+˙b-Wb
43 33 26 40 27 41 42 syl131anc φbB0˙<˙bb<˙XX<˙b+˙bX-Wb<˙b+˙b-Wb
44 1 8 28 grpaddsubass WGrpbBbBbBb+˙b-Wb=b+˙b-Wb
45 25 27 27 27 44 syl13anc φbB0˙<˙bb<˙XX<˙b+˙bb+˙b-Wb=b+˙b-Wb
46 32 oveq2d φbB0˙<˙bb<˙XX<˙b+˙bb+˙b-Wb=b+˙0˙
47 1 8 2 grprid WGrpbBb+˙0˙=b
48 25 27 47 syl2anc φbB0˙<˙bb<˙XX<˙b+˙bb+˙0˙=b
49 45 46 48 3eqtrd φbB0˙<˙bb<˙XX<˙b+˙bb+˙b-Wb=b
50 43 49 breqtrd φbB0˙<˙bb<˙XX<˙b+˙bX-Wb<˙b
51 1 4 8 25 38 30 27 30 50 ogrpaddltrd φbB0˙<˙bb<˙XX<˙b+˙bX-Wb+˙X-Wb<˙X-Wb+˙b
52 1 8 28 grpnpcan WGrpXBbBX-Wb+˙b=X
53 25 26 27 52 syl3anc φbB0˙<˙bb<˙XX<˙b+˙bX-Wb+˙b=X
54 51 53 breqtrd φbB0˙<˙bb<˙XX<˙b+˙bX-Wb+˙X-Wb<˙X
55 ovexd φbB0˙<˙bb<˙XX<˙b+˙bX-Wb+˙X-WbV
56 3 4 pltle WGrpX-Wb+˙X-WbVXBX-Wb+˙X-Wb<˙XX-Wb+˙X-Wb˙X
57 25 55 26 56 syl3anc φbB0˙<˙bb<˙XX<˙b+˙bX-Wb+˙X-Wb<˙XX-Wb+˙X-Wb˙X
58 54 57 mpd φbB0˙<˙bb<˙XX<˙b+˙bX-Wb+˙X-Wb˙X
59 breq2 c=X-Wb0˙<˙c0˙<˙X-Wb
60 id c=X-Wbc=X-Wb
61 60 60 oveq12d c=X-Wbc+˙c=X-Wb+˙X-Wb
62 61 breq1d c=X-Wbc+˙c˙XX-Wb+˙X-Wb˙X
63 59 62 anbi12d c=X-Wb0˙<˙cc+˙c˙X0˙<˙X-WbX-Wb+˙X-Wb˙X
64 63 rspcev X-WbB0˙<˙X-WbX-Wb+˙X-Wb˙XcB0˙<˙cc+˙c˙X
65 30 37 58 64 syl12anc φbB0˙<˙bb<˙XX<˙b+˙bcB0˙<˙cc+˙c˙X
66 6 ad2antrr φbB0˙<˙bb<˙XWoGrp
67 isogrp WoGrpWGrpWoMnd
68 67 simprbi WoGrpWoMnd
69 omndtos WoMndWToset
70 66 68 69 3syl φbB0˙<˙bb<˙XWToset
71 66 24 syl φbB0˙<˙bb<˙XWGrp
72 simplr φbB0˙<˙bb<˙XbB
73 71 72 72 39 syl3anc φbB0˙<˙bb<˙Xb+˙bB
74 11 ad2antrr φbB0˙<˙bb<˙XXB
75 1 3 4 tlt2 WTosetb+˙bBXBb+˙b˙XX<˙b+˙b
76 70 73 74 75 syl3anc φbB0˙<˙bb<˙Xb+˙b˙XX<˙b+˙b
77 22 65 76 mpjaodan φbB0˙<˙bb<˙XcB0˙<˙cc+˙c˙X
78 10 3expia φaB0˙<˙abB0˙<˙bb<˙a
79 78 ralrimiva φaB0˙<˙abB0˙<˙bb<˙a
80 breq2 a=X0˙<˙a0˙<˙X
81 breq2 a=Xb<˙ab<˙X
82 81 anbi2d a=X0˙<˙bb<˙a0˙<˙bb<˙X
83 82 rexbidv a=XbB0˙<˙bb<˙abB0˙<˙bb<˙X
84 80 83 imbi12d a=X0˙<˙abB0˙<˙bb<˙a0˙<˙XbB0˙<˙bb<˙X
85 84 rspcv XBaB0˙<˙abB0˙<˙bb<˙a0˙<˙XbB0˙<˙bb<˙X
86 11 79 12 85 syl3c φbB0˙<˙bb<˙X
87 77 86 r19.29a φcB0˙<˙cc+˙c˙X