Description: Arithmetic series sum of the first N nonnegative integers. (Contributed by Mario Carneiro, 17-Apr-2015) (Proof shortened by AV, 2-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | arisum2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 | |
|
2 | nnm1nn0 | |
|
3 | nn0uz | |
|
4 | 2 3 | eleqtrdi | |
5 | elfznn0 | |
|
6 | 5 | adantl | |
7 | 6 | nn0cnd | |
8 | id | |
|
9 | 4 7 8 | fsum1p | |
10 | 1e0p1 | |
|
11 | 10 | oveq1i | |
12 | 11 | sumeq1i | |
13 | 12 | oveq2i | |
14 | fzfid | |
|
15 | elfznn | |
|
16 | 15 | adantl | |
17 | 16 | nncnd | |
18 | 14 17 | fsumcl | |
19 | 18 | addlidd | |
20 | 13 19 | eqtr3id | |
21 | arisum | |
|
22 | 2 21 | syl | |
23 | nncn | |
|
24 | 23 | 2timesd | |
25 | 24 | oveq2d | |
26 | 23 | sqcld | |
27 | 26 23 23 | subsub4d | |
28 | 25 27 | eqtr4d | |
29 | 28 | oveq1d | |
30 | binom2sub1 | |
|
31 | 23 30 | syl | |
32 | 26 23 | subcld | |
33 | 1cnd | |
|
34 | 32 23 33 | subsubd | |
35 | 29 31 34 | 3eqtr4d | |
36 | 35 | oveq1d | |
37 | ax-1cn | |
|
38 | subcl | |
|
39 | 23 37 38 | sylancl | |
40 | 32 39 | npcand | |
41 | 36 40 | eqtrd | |
42 | 41 | oveq1d | |
43 | 22 42 | eqtrd | |
44 | 20 43 | eqtrd | |
45 | 9 44 | eqtrd | |
46 | oveq1 | |
|
47 | 46 | oveq2d | |
48 | 0re | |
|
49 | ltm1 | |
|
50 | 48 49 | ax-mp | |
51 | 0z | |
|
52 | peano2zm | |
|
53 | 51 52 | ax-mp | |
54 | fzn | |
|
55 | 51 53 54 | mp2an | |
56 | 50 55 | mpbi | |
57 | 47 56 | eqtrdi | |
58 | 57 | sumeq1d | |
59 | sum0 | |
|
60 | 58 59 | eqtrdi | |
61 | sq0i | |
|
62 | id | |
|
63 | 61 62 | oveq12d | |
64 | 0m0e0 | |
|
65 | 63 64 | eqtrdi | |
66 | 65 | oveq1d | |
67 | 2cn | |
|
68 | 2ne0 | |
|
69 | 67 68 | div0i | |
70 | 66 69 | eqtrdi | |
71 | 60 70 | eqtr4d | |
72 | 45 71 | jaoi | |
73 | 1 72 | sylbi | |