Metamath Proof Explorer


Theorem arisum2

Description: Arithmetic series sum of the first N nonnegative integers. (Contributed by Mario Carneiro, 17-Apr-2015) (Proof shortened by AV, 2-Aug-2021)

Ref Expression
Assertion arisum2 N0k=0N1k=N2N2

Proof

Step Hyp Ref Expression
1 elnn0 N0NN=0
2 nnm1nn0 NN10
3 nn0uz 0=0
4 2 3 eleqtrdi NN10
5 elfznn0 k0N1k0
6 5 adantl Nk0N1k0
7 6 nn0cnd Nk0N1k
8 id k=0k=0
9 4 7 8 fsum1p Nk=0N1k=0+k=0+1N1k
10 1e0p1 1=0+1
11 10 oveq1i 1N1=0+1N1
12 11 sumeq1i k=1N1k=k=0+1N1k
13 12 oveq2i 0+k=1N1k=0+k=0+1N1k
14 fzfid N1N1Fin
15 elfznn k1N1k
16 15 adantl Nk1N1k
17 16 nncnd Nk1N1k
18 14 17 fsumcl Nk=1N1k
19 18 addlidd N0+k=1N1k=k=1N1k
20 13 19 eqtr3id N0+k=0+1N1k=k=1N1k
21 arisum N10k=1N1k=N12+N-12
22 2 21 syl Nk=1N1k=N12+N-12
23 nncn NN
24 23 2timesd N2 N=N+N
25 24 oveq2d NN22 N=N2N+N
26 23 sqcld NN2
27 26 23 23 subsub4d NN2-N-N=N2N+N
28 25 27 eqtr4d NN22 N=N2-N-N
29 28 oveq1d NN2-2 N+1=N2N-N+1
30 binom2sub1 NN12=N2-2 N+1
31 23 30 syl NN12=N2-2 N+1
32 26 23 subcld NN2N
33 1cnd N1
34 32 23 33 subsubd NN2-N-N1=N2N-N+1
35 29 31 34 3eqtr4d NN12=N2-N-N1
36 35 oveq1d NN12+N-1=N2-N-N1+N-1
37 ax-1cn 1
38 subcl N1N1
39 23 37 38 sylancl NN1
40 32 39 npcand NN2-N-N1+N-1=N2N
41 36 40 eqtrd NN12+N-1=N2N
42 41 oveq1d NN12+N-12=N2N2
43 22 42 eqtrd Nk=1N1k=N2N2
44 20 43 eqtrd N0+k=0+1N1k=N2N2
45 9 44 eqtrd Nk=0N1k=N2N2
46 oveq1 N=0N1=01
47 46 oveq2d N=00N1=001
48 0re 0
49 ltm1 001<0
50 48 49 ax-mp 01<0
51 0z 0
52 peano2zm 001
53 51 52 ax-mp 01
54 fzn 00101<0001=
55 51 53 54 mp2an 01<0001=
56 50 55 mpbi 001=
57 47 56 eqtrdi N=00N1=
58 57 sumeq1d N=0k=0N1k=kk
59 sum0 kk=0
60 58 59 eqtrdi N=0k=0N1k=0
61 sq0i N=0N2=0
62 id N=0N=0
63 61 62 oveq12d N=0N2N=00
64 0m0e0 00=0
65 63 64 eqtrdi N=0N2N=0
66 65 oveq1d N=0N2N2=02
67 2cn 2
68 2ne0 20
69 67 68 div0i 02=0
70 66 69 eqtrdi N=0N2N2=0
71 60 70 eqtr4d N=0k=0N1k=N2N2
72 45 71 jaoi NN=0k=0N1k=N2N2
73 1 72 sylbi N0k=0N1k=N2N2