Metamath Proof Explorer


Theorem aspval2

Description: The algebraic closure is the ring closure when the generating set is expanded to include all scalars.EDITORIAL : In light of this, is AlgSpan independently needed? (Contributed by Stefan O'Rear, 9-Mar-2015)

Ref Expression
Hypotheses aspval2.a A=AlgSpanW
aspval2.c C=algScW
aspval2.r R=mrClsSubRingW
aspval2.v V=BaseW
Assertion aspval2 WAssAlgSVAS=RranCS

Proof

Step Hyp Ref Expression
1 aspval2.a A=AlgSpanW
2 aspval2.c C=algScW
3 aspval2.r R=mrClsSubRingW
4 aspval2.v V=BaseW
5 elin xSubRingWLSubSpWxSubRingWxLSubSpW
6 5 anbi1i xSubRingWLSubSpWSxxSubRingWxLSubSpWSx
7 anass xSubRingWxLSubSpWSxxSubRingWxLSubSpWSx
8 6 7 bitri xSubRingWLSubSpWSxxSubRingWxLSubSpWSx
9 eqid LSubSpW=LSubSpW
10 2 9 issubassa2 WAssAlgxSubRingWxLSubSpWranCx
11 10 anbi1d WAssAlgxSubRingWxLSubSpWSxranCxSx
12 unss ranCxSxranCSx
13 11 12 bitrdi WAssAlgxSubRingWxLSubSpWSxranCSx
14 13 pm5.32da WAssAlgxSubRingWxLSubSpWSxxSubRingWranCSx
15 8 14 bitrid WAssAlgxSubRingWLSubSpWSxxSubRingWranCSx
16 15 abbidv WAssAlgx|xSubRingWLSubSpWSx=x|xSubRingWranCSx
17 16 adantr WAssAlgSVx|xSubRingWLSubSpWSx=x|xSubRingWranCSx
18 df-rab xSubRingWLSubSpW|Sx=x|xSubRingWLSubSpWSx
19 df-rab xSubRingW|ranCSx=x|xSubRingWranCSx
20 17 18 19 3eqtr4g WAssAlgSVxSubRingWLSubSpW|Sx=xSubRingW|ranCSx
21 20 inteqd WAssAlgSVxSubRingWLSubSpW|Sx=xSubRingW|ranCSx
22 1 4 9 aspval WAssAlgSVAS=xSubRingWLSubSpW|Sx
23 assaring WAssAlgWRing
24 4 subrgmre WRingSubRingWMooreV
25 23 24 syl WAssAlgSubRingWMooreV
26 eqid ScalarW=ScalarW
27 assalmod WAssAlgWLMod
28 eqid BaseScalarW=BaseScalarW
29 2 26 23 27 28 4 asclf WAssAlgC:BaseScalarWV
30 29 frnd WAssAlgranCV
31 30 adantr WAssAlgSVranCV
32 simpr WAssAlgSVSV
33 31 32 unssd WAssAlgSVranCSV
34 3 mrcval SubRingWMooreVranCSVRranCS=xSubRingW|ranCSx
35 25 33 34 syl2an2r WAssAlgSVRranCS=xSubRingW|ranCSx
36 21 22 35 3eqtr4d WAssAlgSVAS=RranCS