Metamath Proof Explorer


Theorem axccdom

Description: Relax the constraint on ax-cc to dominance instead of equinumerosity. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses axccdom.1 φ X ω
axccdom.2 φ z X z
Assertion axccdom φ f f Fn X z X f z z

Proof

Step Hyp Ref Expression
1 axccdom.1 φ X ω
2 axccdom.2 φ z X z
3 simpr φ X Fin X Fin
4 simpr φ X Fin z X z X
5 2 adantlr φ X Fin z X z
6 3 4 5 choicefi φ X Fin f f Fn X z X f z z
7 1 adantr φ ¬ X Fin X ω
8 isfinite2 X ω X Fin
9 8 con3i ¬ X Fin ¬ X ω
10 9 adantl φ ¬ X Fin ¬ X ω
11 7 10 jca φ ¬ X Fin X ω ¬ X ω
12 bren2 X ω X ω ¬ X ω
13 11 12 sylibr φ ¬ X Fin X ω
14 ctex X ω X V
15 1 14 syl φ X V
16 15 adantr φ X ω X V
17 simpr φ X ω X ω
18 breq1 x = X x ω X ω
19 raleq x = X z x z g z z z X z g z z
20 19 exbidv x = X g z x z g z z g z X z g z z
21 18 20 imbi12d x = X x ω g z x z g z z X ω g z X z g z z
22 ax-cc x ω g z x z g z z
23 21 22 vtoclg X V X ω g z X z g z z
24 16 17 23 sylc φ X ω g z X z g z z
25 15 mptexd φ z X g z V
26 25 adantr φ z X z g z z z X g z V
27 fvex g z V
28 27 rgenw z X g z V
29 eqid z X g z = z X g z
30 29 fnmpt z X g z V z X g z Fn X
31 28 30 ax-mp z X g z Fn X
32 31 a1i φ z X z g z z z X g z Fn X
33 nfv z φ
34 nfra1 z z X z g z z
35 33 34 nfan z φ z X z g z z
36 id z X z X
37 27 a1i z X g z V
38 29 fvmpt2 z X g z V z X g z z = g z
39 36 37 38 syl2anc z X z X g z z = g z
40 39 adantl φ z X z g z z z X z X g z z = g z
41 rspa z X z g z z z X z g z z
42 41 adantll φ z X z g z z z X z g z z
43 2 adantlr φ z X z g z z z X z
44 id z g z z z g z z
45 42 43 44 sylc φ z X z g z z z X g z z
46 40 45 eqeltrd φ z X z g z z z X z X g z z z
47 46 ex φ z X z g z z z X z X g z z z
48 35 47 ralrimi φ z X z g z z z X z X g z z z
49 32 48 jca φ z X z g z z z X g z Fn X z X z X g z z z
50 fneq1 f = z X g z f Fn X z X g z Fn X
51 nfcv _ z f
52 nfmpt1 _ z z X g z
53 51 52 nfeq z f = z X g z
54 fveq1 f = z X g z f z = z X g z z
55 54 eleq1d f = z X g z f z z z X g z z z
56 53 55 ralbid f = z X g z z X f z z z X z X g z z z
57 50 56 anbi12d f = z X g z f Fn X z X f z z z X g z Fn X z X z X g z z z
58 57 spcegv z X g z V z X g z Fn X z X z X g z z z f f Fn X z X f z z
59 26 49 58 sylc φ z X z g z z f f Fn X z X f z z
60 59 adantlr φ X ω z X z g z z f f Fn X z X f z z
61 60 ex φ X ω z X z g z z f f Fn X z X f z z
62 61 exlimdv φ X ω g z X z g z z f f Fn X z X f z z
63 24 62 mpd φ X ω f f Fn X z X f z z
64 13 63 syldan φ ¬ X Fin f f Fn X z X f z z
65 6 64 pm2.61dan φ f f Fn X z X f z z