Description: Relax the constraint on ax-cc to dominance instead of equinumerosity. (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | axccdom.1 | |
|
axccdom.2 | |
||
Assertion | axccdom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axccdom.1 | |
|
2 | axccdom.2 | |
|
3 | simpr | |
|
4 | simpr | |
|
5 | 2 | adantlr | |
6 | 3 4 5 | choicefi | |
7 | 1 | adantr | |
8 | isfinite2 | |
|
9 | 8 | con3i | |
10 | 9 | adantl | |
11 | 7 10 | jca | |
12 | bren2 | |
|
13 | 11 12 | sylibr | |
14 | ctex | |
|
15 | 1 14 | syl | |
16 | 15 | adantr | |
17 | simpr | |
|
18 | breq1 | |
|
19 | raleq | |
|
20 | 19 | exbidv | |
21 | 18 20 | imbi12d | |
22 | ax-cc | |
|
23 | 21 22 | vtoclg | |
24 | 16 17 23 | sylc | |
25 | 15 | mptexd | |
26 | 25 | adantr | |
27 | fvex | |
|
28 | 27 | rgenw | |
29 | eqid | |
|
30 | 29 | fnmpt | |
31 | 28 30 | ax-mp | |
32 | 31 | a1i | |
33 | nfv | |
|
34 | nfra1 | |
|
35 | 33 34 | nfan | |
36 | id | |
|
37 | 27 | a1i | |
38 | 29 | fvmpt2 | |
39 | 36 37 38 | syl2anc | |
40 | 39 | adantl | |
41 | rspa | |
|
42 | 41 | adantll | |
43 | 2 | adantlr | |
44 | id | |
|
45 | 42 43 44 | sylc | |
46 | 40 45 | eqeltrd | |
47 | 46 | ex | |
48 | 35 47 | ralrimi | |
49 | 32 48 | jca | |
50 | fneq1 | |
|
51 | nfcv | |
|
52 | nfmpt1 | |
|
53 | 51 52 | nfeq | |
54 | fveq1 | |
|
55 | 54 | eleq1d | |
56 | 53 55 | ralbid | |
57 | 50 56 | anbi12d | |
58 | 57 | spcegv | |
59 | 26 49 58 | sylc | |
60 | 59 | adantlr | |
61 | 60 | ex | |
62 | 61 | exlimdv | |
63 | 24 62 | mpd | |
64 | 13 63 | syldan | |
65 | 6 64 | pm2.61dan | |